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The George Washington University Regulatory Studies Center 

The George Washington University Regulatory Studies Center works to improve 

regulatory policy through research, education, and outreach. As part of its mission, 

the Center conducts careful and independent analyses to assess rulemaking proposals 

from the perspective of the public interest. This comment on the Environmental 

Protection Agency’s proposed rule revising National Ambient Air Quality Standards 

(NAAQS) for ozone does not represent the views of any particular affected party or 

special interest, but is designed to evaluate the effect of EPA’s proposal on its 

statutory mandate to “protect public health.” 

Introduction 

The Clean Air Act directs the EPA Administrator to set “primary,” or health-based, 

NAAQS at levels that are “requisite to protect the public health … allowing an 
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adequate margin of safety,”
3
 based on “air quality criteria [that] shall accurately 

reflect the latest scientific knowledge useful in indicating the kind and extent of all 

identifiable effects on public health or welfare which may be expected from the 

presence of such pollutant in the ambient air, in varying quantities.” §108(a)(2) It 

further requires the Administrator to set “secondary” (welfare-based) standards based 

on these criteria at a level “requisite to protect the public welfare from any known or 

anticipated adverse effects.”
4
 (This comment focuses exclusively on the primary 

standard.) 

Amendments to the Clean Air Act in 1977 (P.L. 95-95) required the Administrator to 

conduct a “thorough review of the criteria…and promulgate such new standards as 

may be appropriate,” at least every five years. In setting primary standards, EPA may 

not consider the costs of achieving the standard.
5
  

In this notice, EPA proposes to determine that the current O3 primary standard of 

0.075 ppm “is not requisite to protect public health within an adequate margin of 

safety”; thus, “it should be revised to provide increased public health protection.”
6
 

EPA proposes to revise the O3 standard to “within the range of 0.065 ppm to 0.070 

ppm” in order to increase protection of public health including for populations 

deemed “at risk” such as children, older persons, and those with health problems.  

EPA’s reasoning and recommendations are presented in several key documents, 

including the following. 

 Proposed Rule: National Ambient Air Quality Standards for Ozone, 79 

Federal Register 75233 -75411 

 Final Report: Health Risk and Exposure Assessment for Ozone, August 2014  

 Final Report: Integrated Science Assessment of Ozone and Related 

Photochemical Oxidants, 2013 (hereafter “ISA”) 

                                                 
3
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6
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Executive Summary 

EPA’s proposed determination that existing ozone NAAQS are not requisite to 

protect public health with an adequate margin of safety is not justified by the 

evidence it presents. Nor do EPA’s predictions that further reductions in ozone 

standards will cause future public health benefits follow from sound and reliable 

scientific methods of causal analysis and prediction. The U.S. EPA document 

entitled Health Risk and Exposure Assessment for Ozone, Final (July, 2014): 

Executive Summary states in its first paragraph that “The health effects evaluated in 

this HREA are based on the findings of the O3 ISA (U.S. EPA, 2013) that short term 

O3 exposures are causally related to respiratory effects, and likely causally related to 

cardiovascular effects, and that long term O3 exposures are likely causally related to 

respiratory effects.” The introduction also states that “The results of the HREA are 

developed to inform the O3 Policy Assessment (PA) in considering the adequacy of 

the existing O3 standards, and potential risk reductions associated with potential 

alternative levels of the standard.”  

Thus, EPA positions causality and its implications for potential risk reductions as 

leading considerations in its proposed decision to reduce existing standards for 

ozone. The specific meaning of causality to which EPA refers is that it would allow 

readers of the policy assessment to consider “potential risk reductions associated 

with potential alternative levels of the standard.” We assume that EPA means 

“caused by” rather than “associated with” here, and that they mean that their 

assessment and causality determination will allow interested policy makers to 

understand how different reductions in the ozone standard would (probably) affect 

future risks to human health and other endpoints of interest. This crucial claim 

appears to be mistaken and misleading. EPA has presented no validated causal 

modeling that would enable correct prediction (and uncertainty characterization) of 

the effects (if any) that future changes in O3 levels might cause in future changes in 

health effects. Rather, EPA uses measures and models of historical associations 

between O3 levels and adverse health effects as if they were known to be entirely 

causal. This does not provide a sound or reliable basis for risk assessment (Appendix 

A; Dominici et al., 2014).  

EPA follows a well-developed but unreliable quantitative risk assessment (QRA) 

process, critically discussed in the next section and in Appendix A, that interprets 

statistical associations as being causal based on weight-of-evidence (WoE) 

considerations. As discussed in detail later, WoE considerations are not logically or 

practically adequate for this purpose (e.g., Goodman et al., 2013; Morabia, 2013; 

Rhomberg et al., 2013; Appendix A). Table 1 of EPA’s ozone ISA presents these 
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considerations. They incorporate several formal logical fallacies, such the ex post 

ergo propter hoc fallacy that “Evidence of a temporal sequence between the 

introduction of an agent, and appearance of the effect, constitutes another argument 

in favor of causality.” There is no theoretical or practical reason to suppose that 

EPA’s causal judgments based on these WoE considerations are factually correct. 

Experts, like other people, typically have high confidence in their own judgments, 

even when these lack objective validity (Kahneman, 2011). But subjective 

confidence in subjective judgments should not be used in place of sound, objective 

scientific methods. To do so, as in EPA’s risk assessment for ozone, replaces sound 

science with potentially arbitrary, biased, and mistaken judgments.  

To obtain quantitative risk and benefit estimates, EPA applies a new quantitative 

model (The “MSS model”) of the relation between ozone levels and decrements in 

lung function. This model makes predictions that depend sensitively on assumptions 

that are known to be incorrect (e.g., that individual variability is normally 

distributed) but that are made anyway for the sake of convenience. There are several 

key uncertainties about the model assumptions and conclusions, none of which has 

been quantified.  

EPA also develops an approach to quantitative risk assessment based on 

epidemiological data in section 7.1.2 that makes the crucial error of treating the slope 

of a curve (i.e., the change in y divided by change in x) as if it showed the future 

changes in the variable on the y axis (health effects) that would be caused by 

changes in the variable on the x axis (exposure). This conceptual error invalidates 

EPA’s quantitative risk and benefit predictions; it is a completely invalid 

interpretation of the slope of the model curve fit to past data (see Appendix A and 

Rothman et al., 2012).  

A simple analogy may help to make this technical point clear. Dividing car accidents 

per year in a population by pounds of potatoes consumed per year in that population 

would produce a positive “slope factor” (i.e., ratio) linking these two quantities. One 

could meaningfully discuss the change in car accidents per unit change in potato 

consumption when discussing the slope of a regression curve fit to their historical 

values. But it would be utterly mistaken to interpret this as implying that reducing 

future potato consumption would cause a reduction in future car accidents. Figure 2 

of Appendix A shows a more realistic example. EPA’s risk assessment makes 

essentially this conceptual error, confusing the changes used to calculate slopes of 

exposure-response curves with the changes in health effects that causal mechanisms 

might cause if exposure were changed. 
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EPA’s use of associational methods to drive key causal conclusions ignores a 

consensus in disciplines outside epidemiology that associational methods are 

unreliable, logically unsound, and inappropriate for drawing causal inferences (e.g., 

Dominici et al., 2014; Rothman et al., 2012; Cox and Popken, 2015). EPA’s 

judgment that model-based associations are causal also conflicts with quantitative 

causal analyses of historical data. Studies that have applied formal quantitative 

causal analysis methods have found no detectable human health benefits caused by 

past reductions in ambient ozone levels (e.g., Moore et al., 2012; Cox and Popken, 

2015). These studies provide no objective reason to expect that further reductions in 

the ozone standard will cause future human health benefits.
7
  

The absence of any impact of relatively large reductions in ozone concentrations on 

public health outcomes in previous causal analyses suggests that there may be an 

exposure below which diseases do not occur, and that this threshold may be well 

above the current standard. If this is true, a NAAQS set higher than current levels 

would meet the statutory standard. This is consistent with proposed causal 

mechanisms involving inflammation of the lung, although such thresholds would not 

be apparent in population data unless errors in exposure estimates are properly 

modeled (Cox, 2011, 2012). EPA considers and rejects the hypothesis of an exposure 

threshold for adverse effects that is above current standards, but does not quantify 

exposure uncertainties and their effects on detection and estimation of thresholds. 

Such quantitative uncertainty analysis is essential for correct inferences about 

thresholds.   

In summary, EPA’s quantitative risk estimate (QRA) provides no legitimate reason 

to believe that the proposed action is “requisite to protect public health” or that 

reducing the ozone standard further will cause any public health benefits. The QRA’s 

model-based projections to the contrary are known to rely on mistaken assumptions 

(for the MSS model) and mistaken interpretations of curve-fitting (for the 

epidemiological risk assessment in Section 7). Past data on human health before and 

after reductions in ozone do not reveal any such causal impacts. Given EPA’s 

information and the unquantified model uncertainty that remains, there is no sound 

technical basis for asserting with confidence, based on the models and analyses in 

EPA’s ozone risk assessment, that an ozone standard of 65 ppb would be any more 

protective than 70 ppb, or that 80 ppb is less protective than 60 ppb. To the contrary, 

available data suggest that further reductions in ozone levels will make no difference 

                                                 
7
 EPA’s risk assessment cites a 2008 paper by Moore et al. suggesting that ozone causes harm to 

human health, based on untestable modeling assumptions, but does not cite the 2012 paper that 

superseded it, which found no causal relation between them. 
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to public health, just as recent past reductions in ozone have had no detectable causal 

impact on improving public health. 

Critical Review of EPA Ozone Health Risk Assessment 

EPA’s approach to “causal determination” reflects a half century of departure of 

epidemiology from sound scientific and statistical methods of causal modeling and 

analysis. Starting in the 1960s, epidemiology took a turn away from other sciences 

and engineering disciplines by developing a unique, unproven, and logically unsound 

approach to assessing causation; this approach, now incorporated into weight-of-

evidence systems, lacks justification by underlying principles or by demonstrated 

logical or practical validity (Morabia, 2013).  

Following an influential essay by Hill (1965), epidemiologists began relying on their 

own personal judgments and consideration of various aspects of association to guess 

whether statistical associations might be causal. Regulatory risk assessments started 

substituting consensus opinions based on these guesses for more objective and 

accurate methods of assessing causality. This judgment-based approach, which forms 

the main basis for EPA’s ozone risk assessment, has never been shown to necessarily 

or usually produce correct results (Morabia, 2013). To the contrary, empirical 

research on the accuracy of expert judgments has found that they are usually biased 

and mistaken (Kahneman, 2011). Biases toward false positives (e.g., believing that 

proposed actions will cause benefits that they turn out not to cause) predominate 

(Lehrer, 2012; Ioannadis, 2005, Lehrer, 2012, Sarewitz, 2012, Ottenbacher, 1998; 

Imberger et al., 2011, The Economist, 2013).  

Comment 1: Associational methods are unreliable guides to valid 
causal inference 

EPA experts may (and demonstrably sometimes do) consider that it “could not be 

more clear” that observed associations between air pollution levels and adverse 

health effects are causal (e.g., Harvard School of Public Health, 2002) even though 

more thorough and objective quantitative causal analyses would reveal that they are 

not – that they only reflect coincident historical trends or other non-causal 

explanations (e.g., HEI, 2013). In general, substituting qualitative expert judgments 

about whether associations are probably causal (e.g., using the “Aspects to aid in 

judging causality” listed in Table 1 of EPA’s ozone ISA) for rigorous quantitative 

causal analysis (e.g., using the techniques listed in Table 1 of Appendix A) lacks 

justification (Morabia, 2013). It is part of the sociology of applied science that 

motivated reasoning, confirmation bias, wishful thinking, over-confidence in one’s 



The George Washington University Regulatory Studies Center 

7 

own judgments, and other biases (Kahneman, 2011) can and do routinely produce 

confident but mistaken beliefs that causal relations have been discovered when in 

fact there is no objective evidence of causation; as a result, projected benefits from 

costly actions, based on the mistaken expert judgments, often fail to materialize after 

the costly actions have been taken (Lehrer, 2012; Ioannadis, 2005, Sarewitz, 2012, 

Ottenbacher, 1998; Imberger et al., 2011, The Economist, 2013).  

More fundamentally, association-based methods (e.g., regression modeling, WoE 

judgments), relied on throughout EPA’s ozone risk assessment, are not in general 

reliable guides to the objective truth; for example, they can enable modelers to find 

either statistically “significant” positive exposure-response associations or 

statistically “significant” negative ones, depending on their modeling choices 

(Dominici et al., 2014). Associational methods are not adequate or valid for allowing 

accurate predictions of the effects that future changes in exposures would cause in 

future health risks. Appendix A and its references develop this point in more detail.  

Comment 2: EPA’s ozone risk assessment depends on associational 
methods. 

That EPA’s ozone risk assessment depends heavily on conflating associations with 

causation is well illustrated by the following passages: 

“6.2.3.2 Asthma 

In reference to epidemiologic studies, the ISA states that ‘[t]he evidence 

supporting associations between short-term increases in ambient O3 

concentration and increases in respiratory symptoms in children with 

asthma is derived mostly from examination of 1-h max, 8-h max, or 8-h avg 

O3 concentrations and a large body of single-region or single-city studies. 

The few available U.S. multicity studies produced less consistent 

associations.’ (ISA, p. 6-101 to 6-102). ‘Although recent studies contributed 

mixed evidence, the collective body of evidence supports associations 

between increases in ambient O3 concentration and increased asthma 

medication use in children’ (ISA, p. 6-109).” pp 6-7 to 6-8 

“Mortality Effects 

Recent multicity studies and a multicontinent study have reported 

associations between short-term O3 exposure and mortality, expanding upon 

evidence available in the last review (see Section 6.6). These recent studies 

reported consistent positive associations between short-term O3 exposure 

and total (nonaccidental) mortality, with associations being stronger during 

http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
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the warm season, when O3 concentrations were higher. They also observed 

associations between O3 exposure and cardiovascular and respiratory 

mortality. These recent studies also examined previously identified areas of 

uncertainty in the O3-mortality relationship, and provided additional 

evidence supporting an association between short-term O3 exposure and 

mortality. As a result, the current body of evidence indicates that there is 

likely to be a causal relationship between short-term exposures to O3 

and total mortality.” 

“6.6 Mortality 

6.6.1 Summary of Findings from 2006 O3 AQCD 

The 2006 O3 AQCD (U.S. EPA, 2006b) reviewed a large number of time-

series studies… The association between short-term O3 exposure and 

mortality was substantiated by a collection of meta-analyses and 

international multicity studies. … Overall, the 2006 O3 AQCD identified 

robust associations between various measures of daily ambient O3 

concentrations and all-cause mortality, with additional evidence for 

associations with cardiovascular mortality, which could not be readily 

explained by confounding due to time, weather, or copollutants. … 

Collectively, the 2006 O3 AQCD concluded that “the overall body of 

evidence is highly suggestive that O3 directly or indirectly contributes to 

non-accidental and cardiopulmonary-related mortality.” 

6.6.2 Associations of Mortality and Short-Term O3 Exposure 

Recent studies that examined the association between short-term O3 

exposure and mortality further confirmed the associations reported in the 

2006 O3 AQCD. New multicontinent and multicity studies reported 

consistent positive associations between short-term O3 exposure and all-

cause mortality in all-year analyses, with additional evidence for larger 

mortality risk estimates during the warm or summer months (Figure 6-27 

[and Table 6-42]). These associations were reported across a range of 

ambient O3 concentrations that were in some cases quite low.” 

“6.6.3 Summary and Causal Determination 

The evaluation of new multicity studies that examined the association 

between short term O3 exposure and mortality found evidence which 

supports the conclusions of the 2006 O3 AQCD. These new studies reported 
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consistent positive associations between short-term O3 exposure and all-

cause (nonaccidental) mortality, with associations persisting or increasing in 

magnitude during the warm season, and provide additional support for 

associations between O3 exposure and cardiovascular and respiratory 

mortality.” 

“7.1.2 Calculating Ozone-Related Health Effects Incidence 

The C-R functions used in the risk assessment are empirically estimated 

associations between average ambient concentrations of O3 and the health 

endpoints of interest (e.g., mortality, hospital admissions (HA), emergency 

department (ED) visits). … Given a C-R function of the form shown in 

equation (1) and a particular difference in ambient O3 levels, Δx, the RR 

associated with that difference in ambient O3, denoted as RRΔx, is equal to 

e
βΔx

. The difference in health effects incidence, Δy, corresponding to a 

given difference in ambient O3 levels, Δx, can then be calculated based on 

this RRΔx… These health impact equations are the key equations that 

combine air quality information, C-R function information, and baseline 

health effects incidence information to estimate ambient O3 health risk... ” 

It is clear from such passages that EPA’s risk assessment makes extensive use of 

associations, and that it repeatedly misinterprets evidence of associations as evidence 

for causation. This fundamental error leads to EPA’s “Causal Determination” that 

reducing current ambient ozone levels would improve human health.  

EPA’s approach to quantitative risk assessment based on epidemiological data in 

section 7.1.2 also mistakenly conflates association and causation, completely 

confusing (a) “The difference in health effects incidence, Δy, corresponding to a 

given difference in ambient O3 levels, Δx” as determined by the slope of a curve fit 

to past levels of ozone and health effects incidence rates with (b) The future change 

in health effects incidence that would be caused by a future change in ambient O3 

levels.  

This confusion invalidates EPA’s resulting quantitative benefits assessment. As 

discussed in the above example of potato consumption and car accidents and as 

elaborated further in Appendix A (illustrated with an example of baby aspirin and 

heart attack risk, and in the context of Figure 2 showing a linear slope for historical 

data plotting cardiovascular mortality against cell phone ownership), the slope of an 

exposure-response regression curve is an entirely distinct concept from the causal 

impact of changes in exposure on changes in response. The two have no necessary 

relation to each other. They need not even have the same sign, e.g., a positive 
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exposure-response slope may describe historical data even if the causal relation 

between exposure and response is negative, so that reducing exposure would cause 

increased future risk of response. 

EPA’s use of associational methods to drive key causal conclusions ignores a 

consensus in disciplines outside epidemiology that associational methods are 

unreliable, logically unsound, and inappropriate for drawing causal inferences 

(Dominici et al., 2014; Rothman et al., 2012; Cox and Popken, 2015). As illustrated 

in the above passages, EPA repeatedly moves straight from reports of associations to 

conclusions about causation without applying any formal quantitative causal 

analyses or objective tests to check the validity of their conclusions (e.g., using the 

methods in Hernan and Robins, 2011, 2015 and in the references cited in Table 1 of 

Appendix A).  

Comment 3: EPA has not correctly “established” or “determined” 
causation or demonstrated that reducing ozone standards would 
cause human health benefits 

Although EPA presents no objective causal analysis showing that reducing current 

ozone standards and levels will cause (or in recent decades has caused) any human 

health benefits, its QRA nonetheless projects human health benefits to be achieved 

by proposed future reductions in ozone. To accomplish this, the ozone risk 

assessment applies models of how future human health benefits might change as 

ozone levels changed if there were a causal relation between them and if that causal 

relation were correctly described by the assumed models. Uncertainties about these 

two crucial conditions are not quantified.  

No detectable causal relation between ozone reductions and human health benefits 

has been found in careful examinations of historical data (e.g., HEI, 2010; Moore et 

al., 2013; Cox and Poken, 2015), casting doubt on the validity of EPA”s assumption 

that such a causal relation will hold in future. As discussed in the following 

comments, there is little reason to have confidence that EPA’s models used to 

quantify projected future benefits provide even approximately correct descriptions of 

available data.  

Comment 4: EPA’s risk assessment models and their conclusions and 
predictions depend on implausible, unverified, and inaccurate 
modeling assumptions.  

As explained in section 6.2.4 of the risk assessment, “In this review, EPA is 

investigating the use of a new model that estimates FEV1 responses for individuals 
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associated with short-term exposures to O3 (McDonnell, Stewart, and Smith, 2007; 

McDonnell, Stewart, and Smith, 2010; McDonnell et al., 2012). This is a 

fundamentally different approach than the previous approach, for which the E-R 

function is at a population level, not an individual level. This model was developed 

using controlled human exposure data…” The new model that EPA is investigating 

involves a parameter alpha2 that is assumed to more than quadruple on one’s 18
th

 

birthday, then more than double on one’s 36
th

 birthday, and finally plummet to zero 

on one’s 55
th

 birthday (Table 6-2, p. 6-13). Such jumps do not seem plausible.  

EPA then selects two ad hoc functional forms (out of an infinite number of 

possibilities) and claims that this incorporates model uncertainty: “EPA considered 

both linear and logistic functional forms in estimating the E-R relationship and chose 

a 90 percent logistic/10 percent piecewise-linear split using a Bayesian Markov 

Chain Monte Carlo approach. This Bayesian estimation approach incorporates both 

model uncertainty and uncertainty due to sampling variability.” A more sober 

assessment is that the correct functional forms are unknown, and that neither of the 

two considered forms has been shown to be even approximately correct; this 

enormous model uncertainty has not been correctly accounted for or quantitatively 

characterized in the analysis, results, or statement of conclusions (e.g., using 

Bayesian Model Averaging, as described in Samet and Bodurow, 2008).  

Likewise, EPA states (Section 6.5.1) that “Clearly the intra-individual variability 

Var(å) in the MSS model is a key parameter and is influential in predicting the 

proportions of the population with FEV1 decrements > 10 and 15%. The assumption 

that the distribution of this term is Gaussian is convenient for fitting the model, but is 

not accurate. The extent to which this mis-specification affects the estimates of the 

parameters of the MSS model and its predictions is not clear.”  

Comment 5: EPA has not quantified crucial model uncertainties. 
Therefore, confidence intervals calculated assuming that the models 
used are correct are misleadingly narrow and EPA has provided 
policy makers with no basis for confident predictions about how 
different changes in the ozone standard would probably affect public 
health. 

As acknowledged in EPA’s risk assessment (Section 6.5.1), “Although the model 

does not have good predictive ability for individuals (psuedo-R2 0.28), it does better 

at predicting the proportion of individuals with FEV1 decrements. 10, 15, and 20% 

(psuedo-R2s of 0.78, 0.74, 0.68) (McDonnell et al., 2012). The clinical studies that 

these model estimates are based on were conducted with young adult volunteers 

rather than randomly selected individuals, so it may be that selection bias has 
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influenced the model parameter estimates. The parameter estimates are not very 

precise, partly as the result of correlations between the parameter estimates… The 

MSS model is also sensitive to the exposure concentrations, but we have not 

quantified that sensitivity. … We are unable to properly estimate the true sensitivities 

or quantitatively assess the uncertainty of the MSS model. … As discussed in 

Section 6.5.3 below, there are uncertainties in extrapolating the MSS model down to 

age 5 from the age range of 18 to 35 to which the model was fit. …[T]he uncertainty 

of the extension to children of the MSS model could be substantial.”  

Section 6.5.7 adds that “EPA staff have identified key sources of uncertainty with 

respect to the lung function risk estimates. These are: the physiological model in 

APEX for ventilation rates, the O3 exposures estimated by APEX, the MSS model 

applied to ages 18 to 35, and extrapolation of the MSS model to children ages 5 to 

18. … At this time we do not have quantitative estimates of uncertainty for any of 

these.” 

Comment 6: EPA has not demonstrated that its recommended 
reductions in the current ozone standard will cause public health 
benefits.  

EPA’s ozone risk assessment does not provide quantitative risk models and 

uncertainty analyses adequate to support confident or accurate predictions about the 

future public health consequences of different standards. In this respect, its risk 

assessment is crucially incomplete. Its key conclusions and recommendations are 

based only on expert judgments and unverified assumptions. They are not supported 

by causal analyses of historical data, which show no detectable human health 

benefits caused by substantial reductions in ozone levels (e.g., HEI, 2103; Moore et 

al., 2013; Cox and Popken, 2015). 

In summary, EPA is using a new model that takes “a fundamentally different 

approach than the previous approach,” and that knowingly adopts convenient but 

inaccurate modeling assumptions (mis-specified models), to predict substantial 

future health benefits from further ozone reductions. No such benefits caused by past 

reductions in ozone levels have been found in careful examinations of past data 

(HEI, 2010; Moore et al., 2013; Cox and Poken, 2015). Since the new model is 

known not to be valid (it is mis-specified for convenience) and key uncertainties 

about it have not been quantified, there is no legitimate reason for EPA or policy 

makers to trust its predictions that further ozone reductions will cause substantial 

health benefits, particularly given that empirical observation does not support causal 

connections between past reductions in ozone levels and these health benefits. 
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As a result of its use of associational models and methods and unverified and 

incorrect modeling assumptions and interpretations, EPA has not established 

causality for the health effects that it attributes to ambient levels of ozone. Its claims 

to have done so – including its “Causal determinations” – are based on applying 

expert judgments, which are known to be highly fallible (Kahneman, 2011), to 

associational studies, which are known to be unreliable and inadequate for drawing 

valid causal inferences (Dominici et al., 2014; Cox and Popken, 2015; Appendix A). 

These qualitative subjective judgments are contradicted by more objective and 

reproducible quantitative analyses that have found no human health benefits caused 

by past reductions in ozone, and that have shown that health benefits initially 

attributed to ozone reductions were in fact just artifacts of flawed statistical 

methodology (e.g., HEI, 2010; Moore et al., 2013; Cox and Poken, 2015). Hence, the 

risks that EPA’s assessment attributes to current ambient levels of ozone are 

unsupported by sound, objective, and reliable analysis or by past experience.  

Furthermore, EPA’s ozone risk assessment has not demonstrated that these public 

health risks, even if they exist, would be reduced at all by reducing the current ozone 

standard. (It assumes this in fitting models to data in Section 6 and in misinterpreting 

curve-fitting as if it were causal modeling in Section 7, as previously discussed. But 

an assumption is not a demonstration.)  

The risk reductions that EPA projects from the proposed reductions in ozone 

standards are no more than consequences of unsupported modeling assumptions. 

These projections, which might seem to have been refuted by past experience, are 

not supported by any analyses showing that past ozone reductions have caused the 

benefits that EPA’s models would have predicted for them, or explaining why those 

projected benefits have not been found in practice. Rather, they substitute optimistic 

judgments from selected experts that benefits will occur for objective scientific 

analysis and factual evidence that they have not occurred in places where ambient 

levels of ozone have already been decreased substantially in recent decades (e.g., 

HEI, 2010; Moore et al., 2013; Cox and Poken, 2015; HEI, 2010). 

Comment 7: EPA’s ozone risk assessment can and should be 
improved by applying readily available formal quantitative methods 
of causal analysis and uncertainty characterization. 

Quantitative methods for sound causal analysis and characterization of remaining 

uncertainties, pioneered mainly in disciplines outside epidemiology, have progressed 

rapidly since the 1960s. They are now readily available and widely applied in social 

statistics, econometrics, engineering, neuroscience, artificial intelligence, machine 



The George Washington University Regulatory Studies Center 

14 

learning, and statistics, among others and are increasingly being incorporated into the 

best practices of modern epidemiology (Rothman et al., 2012).  

Appendix A outlines both the pitfalls of association-based methods, and constructive 

methods for more objectively and correctly assessing and quantifying causal 

relations from data (see e.g., Table 1 of Appendix A). A key idea is that causation is 

not primarily about statistical associations between historical levels of variables, 

such as exposure and health effects. Rather, it is primarily about how changes in 

inputs (such as exposure) propagate through a network of validated causal 

mechanisms to cause resulting changes in outputs (such as health effects). Appendix 

A discusses methods to determine, document, and quantify such genuine causal 

influences. 

The following steps would make EPA’s risk assessment for ozone more sound and 

useful. 

1. Formally test whether there is any significant statistical association between 

past changes in ambient levels of ozone and changes in risks of mortality or 

adverse health effects after accounting for modeling biases and uncertainties 

(e.g., by using Bayesian Model Averaging or nonparametric methods).  

2. Formally test whether past changes in ozone exposures have preceded and 

helped to explain the changes in public health effects that EPA’s risk 

assessment claims they will cause. Technical methods for conducting such 

tests (e.g., change-point analyses, intervention analyses, Granger causality 

tests) are readily available and should be used. 

3. Formally test whether any health effects attributed to past changes in ozone 

levels can be made conditionally independent of those ozone levels by 

conditioning on other variables (e.g., daily temperature). If not, as revealed 

by conditional independence tests, this would provide legitimate evidence for 

possible causation. 

4. Present and then test explicit causal graph models for how changes in 

ambient ozone levels propagate along hypothesized causal paths (possibly 

involving changes in reactive oxygen species (ROS) and lung inflammation) 

to produce changes in mortality or other health effects. As mentioned by 

Samet and Bodurow (2008) in a report cited by EPA, one way to do this is to 

“… [D]raw a set of causal graphs, each of which represents a particular 

causal hypothesis, and then consider evidence insofar as it favors one or more 

of these hypotheses and related graphs over the others.”  
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5. Use the causal graphs to identify, test, and if possible refute, non-causal 

explanations for statistical relations among observed variables (including 

exposures, health effects, and any intermediate variables, modifying factors, 

and confounders). 

6. Show that causal mechanisms postulated in the QRA modeling hold for 

realistic changes in ambient concentrations, and that they exhibit stable, 

uniform, law-like behavior. Ideally, there should be no large unexplained 

heterogeneity in estimated input-output (e.g., E-R or C-R) relations, since 

heterogeneity should be explained by differences in input variables such as 

individual covariates (rather than by differences in the causal mechanism or 

laws through which changes in inputs propagate to produce changes in 

outcomes). 

7. Explain why past substantial reductions in ozone levels have not led to the 

predicted (and often claimed) health benefits predicted by modeling 

assumptions and associational modeling (e.g., HEI, 2010). The failure of 

predicted benefits to materialize in the past is a key reason for suspecting that 

they may not materialize in the future, and that EPA’s risk analysis modeling 

methods and assumptions are overly optimistic and lack predictive validity. 

Addressing this gap between predictions and reality is crucial for developing 

trustworthy causal models of how changes in ozone exposures will affect 

public health risks. 

The following sections expand on the preceding points in the context of specific 

passages from the EPA risk assessment for ozone and the source documents on 

which it relies. 

Critical Comments on EPA’s Causal Determination Framework 

The comments that follow are based on the principle that sound quantitative risk 

assessment (QRA) must be based on sound analysis of causal relations between 

proposed risk management actions, such as reducing the current ozone standard, and 

their probable consequences, such as changes in health effects. Appendix A reviews 

principles for how causal analysis for quantitative risk assessment should (and 

should not) be done. This covers not only pitfalls to avoid, based largely on concerns 

about over-reliance on expert judgments and under-reliance on more objective 

methods of causal analysis and modeling at IARC, EPA, OSHA, FDA, and other 

agencies; but also principles for valid causal analysis, inference, and quantitative risk 

assessment (QRA), drawn from a large technical literature on causal analysis.  
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EPA’s “Aspects to Consider in Making Causal Judgments” Do Not 
Accurately Reveal Causation 

Table 1 of the ozone ISA summarizes “aspects” of association that are frequently 

considered in making expert judgments about whether associations might be causal. 

EPA used them as a primary basis for its causal determinations, principle 

conclusions on causality, and predictions that reducing ozone standards further will 

cause future health benefits. These “aspects” of association are reviewed here, along 

with critical comments. 

1. Strength: It is often asserted that the larger is a statistical association between 

exposure and response (i.e., adverse health effects), the more likely it is to be 

causal. Table 1 of EPA’s ISA document states that “The finding of large, precise 

risks increases confidence that the association is not likely due to chance, bias, or 

other factors.” This belief is unjustified. It is a form of the logical fallacy that 

confuses correlation and causation, modified to suggest that strong correlation 

constitutes evidence for causation. As reviewed in Appendix A (see e.g., the 

discussion of Figure 2), a strong association may (and often does) simply reflect 

strong confounding, strong modeling biases, or strong spurious correlation 

between causally unrelated historical trends. Nor does a stronger association 

necessarily imply greater probability of causality; indeed, stronger reported 

associations may be less likely to be causal, as they are more likely to reflect 

strong modeling biases (e.g., Ioannidis, 2005).  

The practical importance of modeling choices as explanations for reported 

significant positive associations for ozone and health effects was highlighted in a 

recent study by Moore et al. (2012), who carried out a causal analysis “with the aim 

of estimating the extent to which reductions in ambient ozone concentrations were 

associated with measurable health benefits, specifically on the proportion of asthma-

related hospital discharges.” Unlike previous analyses that made untestable modeling 

assumptions, this causal analysis found no significant effects of ozone reduction on 

health benefits, prompting the authors to speculate that “Thus, in this ozone study, 

significant results from the [earlier] analysis may be a consequence of the approach 

taken and not solely based on the information in the data.” 

 In EPA’s ozone risk assessment, the extent to which significant associations are 

consequences of the modeling approaches taken, including unverified and possibly 

mistaken modeling assumptions, rather than reflecting information in the data, is not 

quantified. Thus, policy-makers have no way to know whether any of the key 
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conclusions and recommendations is more than a consequence of untested modeling 

assumptions.  

Likewise, Cox and Popken (2015) applied a different causal analysis method 

(Granger causality testing) to time series data on ozone concentrations and mortality 

rates in hundreds of counties in the United States. They found a clear positive 

exposure-response association in regression models, consistent with EPA’s findings, 

but no evidence that the association was causal rather than coincidental (i.e., both 

ozone levels and mortality rates, especially cardiovascular mortality rates, have been 

declining, but not because one causes the other).  

Again, since EPA’s ozone risk assessment treats association as causal without 

applying any formal quantitative tests of this assumption, it is impossible for policy 

makers to know whether any of the causal impacts of reducing ozone that EPA 

projects will actually occur. However, the findings from Moore et al. (2012) and Cox 

and Popken (2015) indicate that past reductions in ozone have not caused any 

detectable health benefits for asthma-related hospitalization or mortality risk 

reductions, respectively. This calls into question EPA’s central assumptions that 

associations imply causation and that future health benefits can be achieved by 

reducing the current ozone standard. 

For ozone, EPA and others have found that pollutant concentrations and adverse 

health effects are often negatively associated, unless modeling constraints are 

imposed or modeling adjustments are made to force them to be positive (Powell et 

al., 2012). A finding of a strong positive association made when other possibilities 

are eliminated via modeling provides no evidence for a true causal relation.  

For example, EPA’s risk assessment notes in 6.6.2.1 that “Because O3 peaks in the 

summer and mortality peaks in the winter, not adjusting or not sufficiently adjusting 

for the seasonal trend would result in an apparent negative association between the 

O3 and mortality time-series. …However, it should be noted, the majority of studies 

in the literature that examined the mortality effects of short-term O3 exposure, 

particularly the multicity studies, used 7 or 8 df/year to adjust for seasonal trends, 

and in both methods a positive association was observed between O3 exposure and 

mortality.” Again, beginning with a negative correlation and then “sufficiently 

adjusting” it to make it positive raises the possibility that reported positive 

associations reflect the willingness of modelers to make adjustments as needed to 

produce them.  

This does not deny the desirability and importance of adjusting for seasonality 

(although adjusting for daily temperatures might be more important and reduce 
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modeling biases due to insufficient flexibility of seasonal adjustments). But such 

adjustments create a strong requirement to quantify and report biases due to multiple 

testing (i.e., searching through multiple possible model specifications, e.g., using 

different lags and degrees of freedom for smoothers, until the desired result is 

obtained) and model specification errors. EPA’s ozone risk assessment, and the key 

studies on which it depends (e.g., the ozone ISA) do not quantify the effects of these 

biases on results. Key model uncertainties are not quantified. Thus, policy makers 

cannot determine from EPA’s risk assessment to what extent reported associations 

and recommendations simply reflect mistaken modeling assumptions (e.g., model 

selection biases and misspecification errors).  

When model diagnostics are not presented and model uncertainties are not 

quantified, as in EPA’s ozone risk assessment, it is always possible to create strong 

positive associations using misspecified statistical model (see Appendix A). For 

example, strong positive associations can be created by misspecified linear 

regression modeling assumptions even in purely random data where it is known that 

there is no causal relation (and no true associations, apart from that created by 

modeling) between exposure and response variables. Appendix A makes this point 

via a simple example using a linear regression model that is misspecified to have a 

zero intercept term. However, the point that modeling assumptions can create strong 

positive associations independent of the true empirical relation – positive, zero, or 

negative – between exposure and risk is much more general.  

In summary, the finding of a strong association does not necessarily or usually give 

any support to the hypothesis that the association is causal, rather than a product of 

strong modeling assumptions, biases, confounding, or coincident trends.  

2. Consistency: A second unwarranted belief is that a positive association that is 

consistently reproduced by different researchers is more likely to be causal than 

an association that has not been reproduced. As EPA states in multiple 

documents, including Table 1 of their ozone ISA, “The reproducibility of 

findings constitutes one of the strongest arguments for causality.” However, 

consistently reproduced findings may simply reflect consistent errors and biases 

in modeling, or consistent failures to fully account for confounders.  

For ozone and mortality, there is no consistency in exposure-response associations. 

As noted in EPA’s ozone risk assessment (section 6.6.2.3), “Evaluation of the O3-

mortality C-R relationship is not straightforward because the evidence from multicity 

studies (using log-linear models) suggests that O3-mortality associations are highly 

heterogeneous across regions.” For older adults, “The inconsistent epidemiologic 
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findings for older adults parallel observations from controlled human exposure 

studies (Section 6.2.1.1).” For asthma, “The few available U.S. multicity studies 

produced less consistent associations (ISA, p. 6-101 to 6-102).” Figure 6-4 shows 

that different studies of campers disagree even about the signs of associations (each 

with 95% confidence, which suggests that the alleged 95% confidence intervals are 

not trustworthy, as opposite signs of association should not be observed this 

frequently if they were correct).  

Moreover, as already discussed, there is no consistency of exposure-response 

relations across studies and models. Thus, Moore et al. (2012) showed that 

statistically significant health benefits from ozone reduction are found in models that 

make unverifiable assumptions, but not in models that use only realistic, empirically 

tested assumptions. Similarly, Powell et al. (2012) comment on the inconsistency of 

associations across studies (some find negative associations and others positive ones, 

all of which are claimed to be statistically significant) and advocate constraining 

studies to force a consistent finding of positive associations rather than negative 

ones. (Roberts (2004) recommends similar measures for similar reasons.) Clearly, 

consistency of positive associations that is enforced when necessary by discarding 

equally valid findings of negative associations cannot be correctly construed as 

providing any evidence for causation, let alone being regarded as “one of the 

strongest arguments for causality.” 

3. Specificity: Table 1 of EPA’s ozone ISA report states that “Evidence linking a 

specific outcome to an exposure can provide a strong argument for causation.” 

The link between asbestos exposure and mesothelioma risk is a common 

example. For ozone at and below currently permitted levels, no such specific 

outcomes are claimed, so this aspect of association does not apply. However, it is 

worth noting that confounding can lead to specificity of an exposure-response 

association even without causality. 

4. Temporality: EPA asserts that “Evidence of a temporal sequence between the 

introduction of an agent, and appearance of the effect, constitutes another 

argument in favor of causality.” However, this argument is unsound. It is a form 

of the ex post logical fallacy. Although EPA is correct that causes precede their 

effects, sound inference about causation requires much more of temporal order, 

including the following. 

a. To count as evidence that exposure causes increased risk of adverse 

health effects, the temporal sequence should enable health effects to be 

predicted better with knowledge of the exposure time series than without 
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it. This condition was not found to hold for ozone and mortality risks 

when it was formally tested using Granger causality and conditional 

independence tests (Cox and Popken, 2015). 

b. The temporal sequence should not be due to coincident historical trends. 

“History” is recognized as a standard threat to valid causal inference in 

quasi-experiments (see Appendix A and references therein). EPA experts 

who have offered confident expert judgments about the causality of air 

pollution health effects associations while ignoring the need to refute 

history as an explanation have thereby reached incorrect conclusions 

(HEI, 2013).  

c. The temporal sequence should not be due to natural variability in time 

series (perhaps combined with selection of time windows by modelers to 

give an appearance of temporality). For ozone, a well-publicized claim of 

a causal impact is “the reduction in the rates of childhood asthma events 

during the 1996 Summer Olympics in Atlanta, Georgia, due to a 

reduction in local motor vehicle traffic” (Buka et al., 2006). Belief in this 

reduction as evidence of a clear causal effect between pollution levels and 

asthma risk was spread by a 2001 article in the Journal of the American 

Medical Association, which reported that “During the Olympic Games, 

the number of asthma acute care events decreased 41.6% (4.23 vs 2.47 

daily events) in the Georgia Medicaid claims file,” coincident with 

significant reductions in ozone and other pollutants (Friedman et al., 

2001).  

Unfortunately, the investigators did not formally test whether the 

observed reduction in asthma cases is unusual for the relevant time of 

year. When other investigators compared fluctuations in asthma acute 

care events during the 1996 Atlanta Olympics to fluctuations over the 

same period in other years, they “did not find significant reductions in the 

number of emergency department visits for respiratory or cardiovascular 

health outcomes in adults or children” (HEI, 2010). Although “They 

confirmed that Atlanta experienced a significant decline in ozone 

concentrations of 20% to 30% during the Olympic Games, with less 

pronounced decreases in concentrations of carbon monoxide, PM10, and 

nitrogen dioxide,” these significant reductions in pollutant levels were not 

matched by any detectable reduction in health risks: “In their primary 

analyses, which were adjusted for seasonal trends in air pollutant 

concentrations and health outcomes during the years before and after the 
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Olympic Games, the investigators did not find significant reductions in 

the number of emergency department visits for respiratory or 

cardiovascular health outcomes in adults or children.” In fact, the only 

significant effect was that “relative risk estimates for the longer time 

series were actually suggestive of increased ED [emergency department] 

visits during the Olympic Games,” primarily for Chronic Obstructive 

Pulmonary Disease (COPD) patients (HEI, 2010).  

In short, although the reduction in air pollution levels during the 

Olympics was real and substantial (although perhaps coincidental, as 

similar reductions occurred at the same time in much of the region), the 

only significant change noted in adverse health effects, compared to other 

years, was a modest increase in emergency department admissions. The 

widely publicized “reduction in the rates of childhood asthma events 

during the 1996 Summer Olympics in Atlanta, Georgia, due to a 

reduction in local motor vehicle traffic” (Buka et al., 2006) appears to be 

an artifact of poor statistics – specifically, failing to quantify natural 

seasonal variability in event rates before interpreting a significant (over 

40%) reduction as evidence of a causal impact.  

5. Biological gradient: Table 1 of EPA’s ISA asserts that “A well-characterized 

exposure-response relationship (e.g., increasing effects associated with greater 

exposure) strongly suggests cause and effect, especially when such relationships 

are also observed for duration of exposure (e.g., increasing effects observed 

following longer exposure times).” This is fallacious, insofar as model 

misspecification or a strong confounder can create a positive association between 

exposure (concentration and duration) and effect in the absence of any causal 

relation between them, as explained further in Appendix A (see e.g., the 

discussion of Figure 1).  

6. Biological plausibility: For biological plausibility, Table 1 of EPA’s ISA states 

that “A proposed mechanistic linking between an effect and exposure to the 

agent is an important source of support for causality, especially when data 

establishing the existence and functioning of those mechanistic links are 

available.” Of course, a proposal is not by itself “an important source of support 

for causality” if the proposal is wrong and the proposed mechanisms do not 

operate in reality. Nor do “data establishing the existence and functioning of 

those mechanistic links” provide support for causality unless the mechanism 

actually operate in the setting of interest. For example, proposing a vague 

explanation (“hand waving”) that refers to experimental data with no known 
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relevance to real public health changes should not be considered “an important 

source of support for causality.” More generally, many mechanistic proposals 

suggested by in vitro findings, high-concentration experiments, or other 

experiments carried out under artificial conditions may prove to be mistaken; 

they should not be counted as evidence for causation. Similarly, proposed 

mechanisms that seem plausible only because of ignorance of relevant biology 

and pathology should not be construed as evidence for causation. 

For ozone, EPA further explains that “The O3-induced lung function decrements 

consistently demonstrated in controlled human exposure studies (Section 6.2.1.1) 

provide biological plausibility for the epidemiologic evidence consistently linking 

short-term increases in ambient O3 concentration with lung function decrements in 

diverse populations.” This claim is problematic, in so far as both “The O3-induced 

lung function decrements consistently demonstrated in controlled human exposure 

studies” and the “epidemiologic evidence consistently linking short-term increases in 

ambient O3 concentration with lung function decrements” are in fact far from 

consistent; see the discussion of consistency above.  

7. Experimental evidence: In EPA’s view, “Strong evidence for causality can be 

provided through ‘natural experiments’ when a change in exposure is found to 

result in a change in occurrence or frequency of health or welfare effects.” For 

ozone, such natural experiments have shown that relatively large changes in 

exposure (e.g., 40% reductions) have resulted in no detectable reductions in the 

occurrence or frequency of health effects (e.g., HEI, 2010 for the Atlanta 

Olympics; Cox and Popken, 2015 for U.S. counties; Moore et al., 2013 for 

hospitalization). It is perhaps fair to wonder whether these natural experiments 

should be construed as providing strong evidence against EPA’s hypothesis that 

future (relatively small) reductions in ozone will cause public health benefits. 

EPA’s risk assessment and ISA document are silent on this issue. No discussion 

or explanation is offered for why projected public health benefits caused by 

ozone reductions are not found in past data. This is an area in which research 

might provide answers to inform future policy. For example, if the explanation 

for the apparent lack of effects of previous ozone reductions on public health is 

that there are two main types of people in the population, insensitive or healthy 

people whose health does not change when ozone exposures are reduced; and 

very sensitive responders who continue to respond just as frequently and in the 

same ways even when ozone levels are reduced, then this understanding might 

also lead to better predictions about the public health effects (or lack of them) to 

be expected from future reductions in ozone levels. Understanding historical data 

better, and being able to explain the results of quantitative causal analyses of past 
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data from natural experiments, seems to be a useful prerequisite for confident 

forecasting about the probable effects of future policy actions. 

8. Coherence. Table 1 of EPA’s ozone ISA also explains that “An inference of 

causality from one line of evidence (e.g., epidemiologic, controlled human 

exposure [clinical], or animal studies) may be strengthened by other lines of 

evidence that support a cause-and-effect interpretation of the association.” 

However, combining lines of evidence none of which suggests that reducing 

ozone has caused public health benefits does not strengthen an inference of 

causality. Conversely, a single line of evidence (e.g., natural experiments 

showing no detectable effects of past ozone reductions on public health) suffices 

to refute any number of lines of evidence that mistakenly predicted that clear 

public health benefits should have been seen.  

9. Analogy: The ozone ISA’s table of “Aspects [of association] to aid in judging 

causality” concludes with these observations: “Structure activity relationships 

and information on the agent’s structural analogs can provide insight into 

whether an association is causal. Similarly, information on mode of action for a 

chemical, as one of many structural analogs, can inform decisions regarding 

likely causality.”  

For ozone, the ISA presents extensive discussions of whether a mode of action 

involving increased reactive oxygen species (ROS) and inflammation in the lung 

might be plausible. However, as detailed in previous biomathematical analyses 

(Cox, 2011, 2012), inflammation-mediated lung diseases should be expected to 

have exposure thresholds below which they are not caused. Epidemiological 

models that do not explicitly and adequately model errors in exposure estimates, 

including EPA’s epidemiological models for ozone health effects in Section 7, 

smear out such thresholds, making them appear to be smooth dose-response 

relations. (They also tend to inflate estimated no-observed-adverse-effects levels, 

so that estimated thresholds may be far higher than true ones.)  

EPA’s ISA presents experimental results on lung responses to ozone in human 

volunteers. These results constitute overwhelming evidence that the subjects 

were alive, and hence had lungs that responded normally to normal challenges. 

But they do not analyze thresholds in the context of exposure estimation errors. 

Hence, they do not confront the fact that the proposed inflammation-mediated 

mechanisms of adverse health effects are analogous to those for other much-

studied lung irritants for which exposure thresholds exist which must be 
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exceeded (for both concentration and duration) to produce lung pathologies or 

diseases (ibid).  

 In short, analogy suggests that ozone probably has no adverse health effects at 

concentrations and durations below certain thresholds. The absence of any 

impact of relatively large reductions in ozone concentrations on public health 

outcomes in causal analyses, previously discussed, might suggest that such a 

threshold may be well above the current standard. 

In summary, although we disagree with EPA that subjective qualitative reflections 

on aspects of association should ever be used in place of rigorous causal analysis and 

hypothesis testing as a basis for making claims about causality in exposure-response 

or concentration-response relations, we also consider that the “Aspects [of 

association] to aid in judging causality” listed in Table 1 of the ozone ISA tend to 

support the view that there is no evidence of a causal relation. That a reasonable 

application of these aspects might lead to a finding of no evidence of causation at 

least as easily as to a determination of causality, as suggested by the preceding 

comments, highlights the subjectivity and unreliability of such WoE-based 

judgments and determinations. 

Critique of EPA’s Risk Assessment Based on Other Criteria 

EPA’s ozone risk assessment may also be evaluated according to the checklist for 

sound QRAs offered in the last part of Appendix A as an alternative to the aspect 

listed in Table 1 of the ozone ISA. The results are as follows.  

Does EPA’s ozone QRA show that changes in exposures precede the 
changes in health effects that they are said to cause? 

Answer: No. The QRA presents no results of any formal quantitative causal analyses 

(e.g., change-point analyses, intervention analyses, or Granger causality tests) 

showing that changes in ambient O3 exposure concentrations precede, and help to 

predict and explain, subsequent changes in public health effects. For mortality risks, 

specifically, it appears that O3 exposures are significantly positively associated with 

both all-cause (AC) and cardiovascular disease (CVD) mortality rates in historical 

data for U.S. counties, but the association does not appear to be causal, insofar as “A 

causal relation between pollutant concentrations and AC or CVD mortality rates 

cannot be inferred from these historical data, although a statistical association 

between them is well supported. There were no significant positive associations 

between changes in PM2.5 or O3 levels and corresponding changes in disease 
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mortality rates between 2000 and 2010, nor for shorter time intervals of 1 to 3 

years.” (Cox and Popken, 2015) 

Does the QRA demonstrate that health effects cannot be made 
conditionally independent of exposure by conditioning on other 
variables (especially, potential confounders)? 

Answer: No. No conditional independence tests are presented. However, EPA’s risk 

assessment does discuss confounding, as follows.  

“6.6.2.1 Confounding 

Recent epidemiologic studies examined potential confounders of the O3-

mortality relationship. These studies specifically focused on whether PM 

and its constituents or seasonal trends confounded the association between 

short-term O3 exposure and mortality.” 

“Confounding by Seasonal Trend 

The APHENA study (Katsouyanni et al., 2009), mentioned above, also 

conducted extensive sensitivity analyses to identify the appropriate: (1) 

smoothing method and basis functions to estimate smooth functions of time 

in city-specific models; and (2) degrees of freedom to be used in the smooth 

functions of time, to adjust for seasonal trends. Because O3 peaks in the 

summer and mortality peaks in the winter, not adjusting or not sufficiently 

adjusting for the seasonal trend would result in an apparent negative 

association between the O3 and mortality time-series. Katsouyanni et al. 

(2009) examined the effect of the extent of smoothing for seasonal trends 

by using models with 3 df/year, 8 df/year (the choice for their main model), 

12 df/year, and df/year selected using the sum of absolute values of partial 

autocorrelation function of the model residuals (PACF) (i.e., choosing the 

degrees of freedom that minimizes positive and negative autocorrelations in 

the residuals). Table 6-46 presents the results of the degrees of freedom 

analysis using alternative methods to calculate a combined estimate: the 

Berkey et al. (1998) meta-regression and the two level normal independent 

sampling estimation (TLNISE) hierarchical method. The results show that 

the methods used to combine single-city estimates did not influence the 

overall results, and that neither 3 df/year nor choosing the df/year by 

minimizing the sum of absolute values of PACF of regression residuals was 

sufficient to adjust for the seasonal negative relationship between O3 and 

mortality. However, it should be noted, the majority of studies in the 
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literature that examined the mortality effects of short-term O3 exposure, 

particularly the multicity studies, used 7 or 8 df/year to adjust for seasonal 

trends, and in both methods a positive association was observed between O3 

exposure and mortality.” 

This analysis is limited by the fact that it adjusts for only two confounders (PM2.5 

and seasonal effects), and not for many others (e.g., daily temperatures). Moreover, it 

shows that EPA readily discovers a significant negative association between O3 and 

mortality, but then applies various statistical adjustments to get a positive association 

instead – but without adjusting for the resulting multiple testing and model selection 

biases. In this context, and in the absence of any conditional independence tests, it is 

not clear what causal significance, if any, the positive associations that EPA’s 

manipulations eventually produce might have. (Adjusting for confounding by season, 

month, temperature, etc. is certainly sensible, but whether any association between 

O3 and adverse health effects remains after conditioning on all relevant confounders 

has not been answered, since conditional independence test results are not reported.) 

Does the QRA present and test explicit causal graph models, showing 
the results of formal statistical tests of the causal hypotheses 
implied by the structure of the model (i.e., which variables point into 
which others, as in Figures 1 or 3)?  

Answer: No 

Have non-causal explanations for statistical relations among 
observed variables (including exposures, health effects, and any 
intermediate variables, modifying factors, and confounders) been 
identified and refuted using well-conducted and reported statistical 
tests?  

Answer: No. As noted in EPA’s ozone ISA (p. 6-220), “[M]ultiple uncertainties 

remain regarding the O3-mortality relationship including: the extent of residual 

confounding by copollutants; factors that modify the O3-mortality association; the 

appropriate lag structure for identifying O3-mortality effects (e.g., single-day lags 

versus distributed lag model); the shape of the O3-mortality C-R function and 

whether a threshold exists; and the identification of populations at-risk to O3-related 

health effects.” (Section 6.6.1). The hypothesis that modeling choices, uncertainties, 

and selection biases, multiple testing bias, and specification errors explain reported 

E-R and C-R associations has not been refuted. Neither has the hypothesis that 

confounders explain them. 
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Have any causal mechanisms postulated in the QRA modeling been 
demonstrated to exhibit stable, uniform, law-like behavior, so that 
there is no substantial unexplained heterogeneity in estimated 
input-output (e.g., E-R or C-R) relations? 

Answer: No. To the contrary, EPA’s risk assessment notes (6.6.1) that “The studies 

evaluated found some evidence for heterogeneity in O3 mortality risk estimates 

across cities and studies” and (6.6.2.3) “Evaluation of the O3-mortality C-R 

relationship is not straightforward because the evidence from multicity studies (using 

log-linear models) suggests that O3-mortality associations are highly heterogeneous 

across regions.” Thus, there is considerable unexplained heterogeneity, indicating 

that EPA has not yet identified stable causal relations that could be used to make 

valid predictions. 

In summary, EPA’s QRA for ozone meets none of the criteria identified in Section 1 

for a sound risk assessment. As a result, we recommend that additional work be done 

to close the gaps just identified (e.g., perform and report conditional independence 

tests, Granger causality tests, causal graph modeling, correction for modeling biases 

and confounding (including residual confounding) by temperature and other major 

confounders, and resolution of heterogeneity. Doing so will provide the foundation 

for a QRA that produces trustworthy results rather than unjustified opinions as a 

basis for future regulation of O3.  

The following section discusses the above points in further detail in the context of 

specific passages from the EPA risk assessment for ozone and the source documents 

on which it relies. 

Comments on Passages from EPA’s Ozone Integrated Science 

Assessment 

EPA’s O3 risk assessment relies heavily on the O3 ISA (Integrated Science 

Assessment),
8
 which explains its approach to determining causality as follows. We 

present the approach using quotes from the ISA, interspersed with comments: 

“Using the causal framework described in the following section, EPA 

scientists consider aspects such as strength, consistency, coherence, and 

biological plausibility of the evidence, and develop causality determinations 

                                                 
8
 http://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=247492#Download  
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on the nature of the relationships. Causality determinations often entail an 

iterative process of review and evaluation of the evidence.” (p. lvi)  

COMMENT: The words “evidence” and “relationships” here refer primarily to 

statistical associations in historical data. They do not refer to validated causal 

relations, mechanisms, or laws that could legitimately be used to predict how future 

changes in O3 exposure will change future health effects. The assumption that past 

statistical associations are the same as future causal relations lacks justification.  

COMMENT: The concept of “causality determination” is flawed. It is not usually the 

case that a statistical association is either causal or not, and hence the presumption 

that there is a binary truth (“causal” or “not causal”) is incorrect. Rather, statistical 

associations may be partly due to biases, partly to confounding, partly to modeling 

choices and errors, partly to coincident historical trends, partly to genuine causality, 

partly to neglected errors in exposure estimates, and so forth. What needs to be 

determined is not whether a statistical relation is causal, but what fraction of it (if 

any) is causal. This, EPA has neither done, nor attempted to do. Yet, it is the only 

thing that matters for making useful predictions about how future changes in 

exposure will change future health effects (if at all). Making a “determination” that a 

statistical association is “causal” (implicitly meaning entirely causal) and then 

treating it as being entirely causal without quantifying or bounding the fractions that 

are due to biases, confounding, coincident trends, and other non-causal sources of 

association, leaves uncompleted the task of informing policy makers correctly about 

the change in health effects that would be caused by future changes in health effects. 

By relying on qualitative “causality determination” and then implicitly treating 

associations as being 100% causal for quantitative purposes, EPA has committed a 

logical error and produced misleading (exaggerated, upper-bound) estimates of the 

health consequences of changing future O3 exposures.  

COMMENT: Notwithstanding common practice in epidemiology (but not in other 

fields, such as engineering or neuroscience or econometrics, where causal relations 

are more usually determined by objective data analysis and explicit modeling and 

hypothesis-testing, rather than by subjective opinions), the consideration of “aspects 

such as strength, consistency, coherence, and biological plausibility of the evidence” 

does not provide the information that is logically necessary to develop valid 

“causality determinations.”  

The weight-of-evidence considerations used by EPA (and many others) have no 

known validity as guides to causality (Morabia, 2013). They are not necessary or 

sufficient for establishing causality, or for making it plausible. They do not, for 
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example rule out strong confounders with time delays, or coincident (but not causal) 

historical trends in exposure and response, or modeling choices and biases, or many 

other possible non-causal explanations for strong, consistent, coherent associations 

that might also seem biologically plausible (especially in the absence of well-

explicated, tested, and validated causal mechanisms explaining how ambient levels 

of exposure would create increased health effects).  

On the other hand, the information that is most essential for drawing valid causal 

inferences—showing how changes in exposures propagate through causal 

mechanisms to increase mortality or morbidity rates (Freedman, 2004)—is entirely 

missing from these “aspects” of association. Therefore, when EPA writes that “EPA 

scientists consider aspects such as strength, consistency, coherence, and biological 

plausibility of the evidence, and develop causality determinations,” they describe a 

process in which EPA scientists make determinations about causality that cannot be 

validly derived from the aspects of the data that they are asked to consider. There is 

no reason to regard the resulting opinions as useful guides to objective, factual truth 

about causality. 

“EPA has developed a consistent and transparent basis for integration of 

scientific evidence and evaluation of the causal nature of air pollution-

related health or welfare effects for use in developing ISAs. The framework 

described below establishes uniform language concerning causality and 

brings more specificity to the findings.” 

COMMENT: EPA’s “basis for integration of scientific evidence and evaluation of 

the causal nature of air pollution-related health or welfare effects for use in 

developing ISAs” is here asserted to be “consistent and transparent.” But it is not. It 

depends essentially on the subjective judgments (via the “causality determination”) 

of EPA-selected experts, none of whom is necessarily expert in the methodology of 

valid causal inference and hypothesis-testing.  

The opinions of experts are subject to the same pitfalls, such as motivated reasoning, 

groupthink, confirmation bias, narrow framing, overconfidence (possibly 

ameliorated by calibration training), and so forth as the opinions of other people 

(Kahneman, 2011). They are not “transparent” in the sense of using independently 

observable and verifiable calculations to move from publicly available data to 

conclusions. Rather, they amount to selected experts using inscrutable judgment 

processes to render “causality determinations” that EPA then declares to be 

“consistent and transparent,” although other experts (especially those trained in 

causal analysis) might reach vastly different conclusions.  



The George Washington University Regulatory Studies Center 

30 

Indeed, EPA’s own experts have sometimes reached vastly different conclusions 

about health effects of pollutants when offering subjective judgments about causality 

without fear of contradiction (e.g., Harvard School of Public Health, 2002) and when 

re-doing their work more carefully to satisfy the rudiments of objective causal 

analysis, such as comparing the outcomes for relevant treatment and control groups 

(e.g., HEI, 2013). It is therefore misleading for EPA to characterize as “consistent 

and transparent” its practice of using expert judgments to obtain “causality 

determinations” that cannot necessarily be derived by objective data analysis of data 

(transparency) or replicated by others (consistency) or made consistent with any 

more objective, data-driven causal analysis.  

“This standardized language was drawn from sources across the federal 

government and wider scientific community, especially the National 

Academy of Sciences (NAS) Institute of Medicine (IOM) document, 

Improving the Presumptive Disability Decision-Making Process for 

Veterans (Samet and Bodurow, 2008), a comprehensive report on 

evaluating causality.” 

COMMENT: The Samet and Bodurow (2008) report is not a “comprehensive report 

on evaluating causality.” It does not provide a comprehensive discussion of most 

methods of valid causal inference (e.g., structural equation modeling, Simon causal 

ordering, compositional causal modeling, causal graph models, Granger causality 

tests, quasi-experiment design and analysis, regression discontinuity and 

instrumental variables approaches, etc.) A comprehensive treatment of evaluating 

causality was not part of its scope or intent.  

“This framework… describes the kinds of scientific evidence used in 

establishing a general causal relationship between exposure and health 

effects;” 

COMMENT: The term “general causal relationship” is not carefully defined. From 

context, it appears to mean “an opinion about whether historical statistical 

associations between exposure and response have certain aspects, listed in Table 1 of 

the ISA.” It is not clear why such “general causal relationships” are emphasized in 

EPA’s risk assessment, as they do not necessarily (or probably) predict how changes 

in future exposures will change future health effects. As discussed previously, the 

aspects of association in Table 1 of the ozone ISA are neither necessary nor 

sufficient to establish causation. 

COMMENT: The framework does not describe “the kinds of scientific evidence 

used in establishing a general causal relationship between exposure and health 
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effects,”whatever that means. Rather, it presents a framework for inviting experts to 

opine about whether associations are causal without doing any formal or objective 

causal analysis needed to reach valid conclusions. It encourages selected experts to 

substitute their own subjective opinions or preconceptions for objective factual or 

scientific analyses of causation by asking them to base their opinions on 

considerations of selected “aspects” statistical associations (e.g., strength and 

consistency) that do not establish causation and that have no known or proven 

validity for informing speculations about causality (e.g., Morabia, 2013). The 

framework neither requires nor uses any formal or objective quantitative causal 

analyses, causal modeling, or causal hypothesis-testing to check whether the expert’s 

subjective judgments are consistent with data or might be factually correct.   

COMMENT: The cited report by Samet and Bodurow (2008) explicitly rejects 

EPA’s claim here that consideration of aspects of statistical associations provide a 

sound basis for “establishing a general causal relationship between exposure and 

health effects.” To the contrary, their report states that “Because a statistical 

association between exposure and disease does not prove causation, plausible 

alternative hypotheses must be eliminated by careful statistical adjustment and/or 

consideration of all relevant scientific knowledge. Epidemiologic studies that show 

an association after such adjustment, for example through multiple regression or 

instrumental variable estimation, and that are reasonably free of bias and further 

confounding, provide evidence but not proof of causation.”
9
 Nowhere does this 

report support EPA’s claim that the types of evidence considered by EPA suffice to 

establish a causal relationship (general or otherwise) between exposure and health 

effects. Thus, EPA cites as an authority for establishing causation based on expert 

consideration of associations a source that explicitly states that epidemiologic studies 

showing associations do not prove causation. 

“This framework… characterizes the process for integration and evaluation 

of evidence necessary to reach a conclusion about the existence of a causal 

relationship;” 

COMMENT: The framework does not “characteriz[e] the process for integration and 

evaluation of evidence necessary to reach a conclusion about the existence of a 

causal relationship.” For example, it says nothing about how to evaluate evidence for 

or against propagation of changes in exposure through networks of causal 

mechanisms to produce changes in health outcomes, although consideration of such 

propagation of changes are necessary to reach valid conclusions about whether a 

causal relationship exists (Freedman, 2004). 

                                                 
9
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“This framework… identifies issues and approaches related to 

uncertainty;” 

COMMENT: We agree that the cited report by Samet and Bodurow (2008) does an 

excellent job of identifying some key issues and approaches related to uncertainty. 

Specifically, this report states that:  

“The uncertainty about the correct causal model involves uncertainty about 

whether exposure in fact causes disease at all, about the set of confounders 

that are associated with exposure and cause disease, about whether there is 

reverse causation, about what are the correct parametric forms of the 

relations of the exposure and confounders with outcome, and about whether 

there are other forms of bias affecting the evidence. One currently used 

method for making this uncertainty clear is to draw a set of causal graphs, 

each of which represents a particular causal hypothesis, and then consider 

evidence insofar as it favors one or more of these hypotheses and related 

graphs over the others. We explain this approach in more detail in 

Appendix J. 

Uncertainty about the model is not just limited to the qualitative causal 

structure; however, it also involves uncertainty about the parametric form 

of the model specified, the variables included, whether or not measurement 

error is modeled, and so on. When mechanistic knowledge exists, this sort 

of uncertainty is mitigated. Nevertheless, model uncertainty is perhaps the 

most important level of uncertainty.”
10

 

However, EPA’s risk assessment and uncertainty analysis do not incorporate or 

respond to these insights. They do not quantify or characterize model uncertainty 

about “about whether exposure in fact causes disease at all.” They do not draw 

causal graph models or test causal hypotheses. They do not refute non-causal 

explanations for E-R and C-R statistical associations. In short, they cite a relatively 

sophisticated discussion of uncertainty and then do not follow the good advice and 

useful insights that it offers. 

“This framework… provides a framework for classifying and characterizing 

the weight of evidence in support of a general causal relationship. 

                                                 
10
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Approaches to assessing the separate and combined lines of evidence (e.g., 

epidemiologic, controlled human exposure, and animal toxicological 

studies) have been formulated by a number of regulatory and science 

agencies, including the IOM of the NAS (Samet and Bodurow, 2008), 

International Agency for Research on Cancer (IARC, 2006), U.S. EPA 

(2005), and Centers for Disease Control andPrevention (CDC, 2004). 

Causal inference criteria have also been described for ecological effects 

evidence (U.S. EPA, 1998; Fox, 1991). These formalized approaches offer 

guidance for assessing causality. The frameworks are similar in nature, 

although adapted to different purposes, and have proven effective in 

providing a uniform structure and language for causal determinations.” 

COMMENT: The term “general causal relationship” is not carefully defined, as 

previously discussed. 

COMMENT: Samet and Bodurow and the other references actually do not 

“provid[e] a framework for classifying and characterizing the weight of evidence in 

support of a general causal relationship.” They provide a framework for classifying 

and characterizing opinions about some aspects of statistical associations that have 

no justification (other than long and widespread usage in epidemiology, though not 

in other fields) for being used to inform expert opinions and speculations about 

causation (Appendix A; Morabia, 2013).  

As stated in the Samet and Bodurow report, “We begin by discussing the problem of 

integrating the evidence from multiple epidemiologic studies. We then describe a 

framework for combining epidemiologic and other evidence into a single 

quantitative judgment about the strength of causation. Next we discuss qualitative 

frameworks that have been used by expert committees for categorizing the overall 

strength of evidence for or against a causal claim. And lastly we propose a 

qualitative framework for causal reference to be used in the presumptive disability 

decision-making process.”
11

  

The quantitative judgment about strength of causation referred to is meta-analysis. 

This fails when the individual studies being integrated do not provide valid evidence 

about causation. The “qualitative frameworks that have been used by expert 

committees for categorizing the overall strength of evidence for or against a causal 

claim” do not identify the fraction of a statistical association that is causal (if any). 

Thus, however appropriate or inappropriate they might be “in the presumptive 

                                                 
11
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disability decision-making process” that is the explicit focus of the Samet and 

Bodurow report, they are not appropriate for risk assessment of future health effects 

– the use that EPA makes of them.  

Likewise, the proposed “qualitative framework for causal reference to be used in the 

presumptive disability decision-making process” may or may not be appropriate for 

this purpose, but it is certainly not justified for the purpose of predicting how future 

changes in ozone exposures will change health risks (if at all). EPA has used a 

presumptive framework intended for a different purpose (e.g. retrospective 

compensation awards), not a predictive framework for giving valid predictions to 

policy makers of the likely health consequences of future changes in exposure levels. 

The framework on which EPA has relied has not been validated or shown to be 

useful for the purpose to which they apply it, i.e., predictive risk modeling rather 

than presumptive, retrospective decision-making about disability awards. 
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APPENDIX A. Principles of Causal Analysis and Inference for 

Quantitative Risk Assessment 

Some Limitations of Traditional Epidemiological Measures for 
Causal Inference 

Uncertainty about Whether Associations are Causal 

Epidemiology has a set of well-developed traditional methods and measures for 

quantifying associations between observed quantities, especially regression model 

coefficients and relative risk (RR) ratios (e.g., the ratio of disease rates for exposed 

and unexposed populations) and quantities derived from them. These include 

population attributable risks (PARs) and population attributable fractions (PAFs) for 

the fraction of disease or mortality cases attributable to a specific cause; global 

burden of disease estimates; etiologic fractions and probability-of-causation 

calculations; and estimated concentration-response slope factors for exposure-

response relations (Rothman et al., 2012). The key idea of all these measures is to 

observe whether more-exposed people suffer adverse consequences at a higher rate 

than less-exposed people and, if so, to attribute the excess risks in the more-exposed 

group to a causal impact of exposure. 

Conventional statistical methods for quantifying uncertainty about measures of 

association, such as confidence intervals and p-values for RR, PAF, or regression 

coefficients in logistic regression, Cox Proportional Hazards, or other parametric or 

semi-parametric regression models, are ubiquitously used to show how firmly the 

data can be used to reject the null hypothesis of independence (no association) 

between exposures and adverse health responses. In addition, model diagnostics 

(such as plots of residuals and tests of model assumptions) can reveal whether 

modeling assumptions appear to be satisfied; more commonly, though less 

informatively, goodness-of-fit measures are reported to build confidence that the 

models used do not give conspicuously poor descriptions of the data, at least as far as 

the goodness-of-fit test can determine. 

The main limitation of these techniques is that they only address associations, rather 

than causation, and hence they cannot quantify the fraction or number of illnesses or 

mortalities per year that would be prevented by reducing or eliminating specific 

exposures. Unfortunately, as many methodologists have noted and warned against, 

PAF and probability of causation, as well as regression coefficients, are commonly 

misinterpreted as doing precisely this (e.g., Rothman et al., 2012). Large 

epidemiological initiatives, such as the World Health Organization’s Global Burden 
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of Disease studies, make heavy use of association-based methods that are treated as 

if they were causal relations. This has become a very common mistake in 

contemporary epidemiological practice. It undermines the validity, credibility, and 

practical value of many (some have argued most) causal claims now being published 

using traditional epidemiological methods (Nuzzo, 2014; Sarewitz, 2012; Lehrer, 

2012). To what extent associations correspond to stable causal laws that can be relied 

on to predict future consequences of policy actions is beyond the power of these 

traditional epidemiological measures to say; doing so requires different techniques 

(Rothman et al., 2012). 

Example: Exposure-Response Relations Depend on Modeling Choices 

A 2014 article in Science (Dominic et al., 2014) noted that “There is a growing 

consensus in economics, political science, statistics, and other fields that the 

associational or regression approach to inferring causal relations – on the basis of 

adjustment with observable confounders – is unreliable in many settings.” To 

illustrate this point, the authors cite estimates of the effects of total suspended 

particulates (TSPs) on mortality rates of adults over 50, in which significantly 

positive associations (regression coefficients) are reported in some regression models 

that did not adjust for confounders such as age and sex, but significantly negative 

associations are reported in other regression models that did adjust for confounders 

by including them as explanatory variables.  

The authors note that the sign, as well as the magnitude, of reported exposure 

concentration-response (C-R) relations depends on details of modeling choices about 

which variables to include as explanatory variables in the regression models. Thus, 

the quantitative results of risk assessments presented to policy makers as showing the 

expected reductions in mortality risk per unit decrease in pollution concentrations 

actually reflect specific modeling choices, rather than reliable causal relations that 

usefully predict how (or whether) reductions in exposure concentrations would 

reduce risks.  

A distinction from econometrics between structural equations and reduced-form 

equations (Klein, 1974) is helpful in understanding how different epidemiologists 

can estimate exposure concentration-response regression coefficients with opposite 

signs from the same data. The following highly simplified hypothetical example 

illustrates the key idea. Suppose that cumulative exposure to a chemical increases in 

proportion to age, and that the risk of disease (the age-specific hazard rate, i.e., the 

probability of being first diagnosed with a disease or adverse medical condition at 

each age) also increases with age. Finally, suppose that the effect of exposure at any 

age is to decrease risk.  



The George Washington University Regulatory Studies Center 

37 

These causal relations are shown via the following two structural equations, which 

have the explicit causal interpretation that an increase in the variable on the right side 

causes an increase in the variable on the left side to make the equation hold (e.g., 

increasing age increases cumulative exposure and disease risk, but increasing 

exposure decreases risk at any age): 

SEM Equations 

𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 =  𝐴𝐺𝐸 

  

𝑅𝐼𝑆𝐾 =  2 ∗ 𝐴𝐺𝐸 –  𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 

These two structural equations together constitute a simple structural equation model 

(SEM) that can be diagrammed as in Figure 1. 

Figure 1.  SEM Causal Graph Model 

2 

𝐴𝐺𝐸  𝑅𝐼𝑆𝐾 

1        -1 

𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 

In this diagram, each variable depends causally only on the variables that point into 

it, as revealed by the SEM equations. The weights on the arrows (the coefficients in 

the SEM equations) show how the average value of the variable at the arrow’s head 

will change if the variable at its tail is increased by one unit. By contrast to such 

causal SEM models, what is called a reduced-form model is obtained by using the 

first SEM equation, EXPOSURE = AGE,to substitute EXPOSURE for AGE in the 

second SEM equation, RISK = 2*AGE – EXPOSURE, to obtain the following: 

Reduced-form Equation 

𝑅𝐼𝑆𝐾 =  𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 

This reduced-form model is a valid descriptive statistical model: it reveals that in 

communities with higher exposure levels, risk should be expected to be greater. But 

it is not a valid causal model: a prediction that reducing exposure would cause a 

reduction in risk would be mistaken. The reduced-form equation is not a structural 

equation, so it cannot be used to predict correctly how changing the right side would 

cause the left side to change. The coefficient of EXPOSURE in the linear regression 

model relating exposure to risk is +1 in the reduced-form model, but is -1 in the SEM 
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model, showing how different investigators may reach opposite conclusions about 

the sign of “the” exposure-response coefficient based on whether or not they 

condition on age (or, equivalently, on whether they use structural or reduced-form 

regression equations).  

In current epidemiological practice, the distinction between structural and reduced-

form equations is often not clearly drawn. Regression coefficients of various signs 

and magnitudes, as well as various measures of association based on relative risk 

ratios, are all presented to policy makers as if they had valid causal interpretations 

and therefore important implications for risk management policy-making. In air 

pollution health effects epidemiology, for example, it is standard practice to present 

regression coefficients as expected reductions in elderly mortality rates (or expected 

increases in life span) per unit reduction in air pollution concentrations (EPA, 2011; 

Fann, 2012), thereby conflating associations between historical levels (e.g., pollutant 

levels and mortality rates both tend to be higher on cold winter days than during the 

rest of the year, and both have declined in recent decades) with a causal, predictive 

relation that implies that future reductions in pollution would cause further future 

reductions in elderly mortality rates. Since such association-based studies are often 

unreliable indicators of causality (Dominici et al., 2014) or simply irrelevant for 

determining causality (Rothman et al., 2012), policy makers who wish to use reliable 

causal relations to inform policy decisions by considering their likely consequences 

must seek elsewhere.  

These limitations of association-based methods have been well discussed among 

methodological specialists for decades (Rothman et al., 2012). Key lessons, such as 

that the same data set can yield either a statistically significant positive exposure-

response regression coefficient or a statistically significant negative exposure-

response regression coefficient, depending on the detailed modeling choices made by 

the investigators, are becoming increasingly appreciated by practitioners (Dominici 

et al., 2014). They illustrate an important type of uncertainty that arises in 

epidemiology, but that is less familiar in many other applied statistical settings: 

uncertainty about the interpretation of regression coefficients (or other association-

based measures such as RR, PAF, etc.) as indicating causal relations vs. confounded 

associations vs. some of each.  

This type of uncertainty cannot be addressed by presenting conventional statistical 

uncertainty measures such as confidence intervals, p-values, regression diagnostics, 

sensitivity analyses, or goodness-of-fit statistics, since the uncertainty is not about 

how well a model fits data, or about the estimated parameters of the model. Rather, it 

is about the extent to which the model is descriptive of the past vs. predictive of 
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different futures caused by different choices. Although this is not an uncertainty to 

which conventional statistical tests apply, it is crucial for the practical purpose of 

making model-informed risk management decisions. Policy decisions successfully 

increase the probabilities of desired outcomes and decrease the frequencies of 

undesired ones only to the extent that they act causally on drivers of the outcomes, 

and not based on how well the models used describe past associations. 

One way to try to bridge the gap between association and causation is to ask selected 

experts what they think about whether or to what extent associations might be causal. 

However, research on the performance of expert judgments has called into question 

the reliability of expert judgments, specifically including judgments about causation. 

Such judgments typically reflect qualitative “weight of evidence” (WoE) 

considerations about the strength, consistency (do multiple independent researchers 

find the claimed associations?), specificity, coherence (are associations of exposure 

with multiple health endpoints mutually consistent with each other and with the 

hypothesis of causality?) temporality (do hypothesized causes precede their 

hypothesized effects?), gradient (are larger exposures associated with larger risks?), 

and biological plausibility of statistical associations and the quality of the data 

sources and studies supporting them.  

In practice, WoE-based judgments face challenges that may render them unreliable 

(e.g., Goodman et al., 2013; Rhomberg et al., 2013). One difficulty is that a strong 

confounder (such as age in Figure 1) with delayed effects can create strong, 

consistent, specific, coherent, temporal associations between exposure and risk of an 

adverse response, with a clear gradient associating larger risks with larger exposures, 

all without thereby providing any evidence that exposure actually causes increased 

risk. Showing that an association is strong, for example, does not address whether it 

is causal (although many WoE systems assume that the former supports the latter).  

Similarly, showing that many different investigators find the same association does 

not shed any light on whether the association they have found is causal, or whether it 

results from biases and confounders that are common across studies. Conflating 

causal and associational concepts, such as evidence for the strength of an association 

and evidence for causality of the association, makes assessments of causality in 

epidemiology idiosyncratic and of uncertain trustworthiness (Morabia, 2013; Höfler, 

2005) compared to methods used in other fields. Most experts in epidemiology have 

been trained to treat various aspects of association as evidence for causation, even 

though they are not, and this undermines the trustworthiness of expert judgments 

about causation based on WoE considerations (Morabia, 2013). 
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In addition, experts are sometimes asked to judge the probability that an association 

is causal (e.g., EPA, 2006). This makes little sense. It neglects the fact that an 

association may be partly causal and partly not (e.g., due to confounding or modeling 

biases or coincident historical trends). For example, if exposure does increase risk, 

but is also confounded by age, then asking for the probability that the regression 

coefficient relating exposure to risk is causal overlooks the realistic possibility that it 

reflects both a causal component and confounding, so that the probability that it is 

partly causal might be 1 and the probability that it is completely causal might be 0. 

(A more useful question to pose to experts might be what fraction of the association 

is causal.)  

Common non-causal sources of statistical associations include model selection and 

multiple testing biases, model specification errors, unmodeled errors in explanatory 

variables in multivariate models, biases due to data selection and coding (e.g., 

dichotomizing or categorizing continuous variables such as age, which can lead to 

residual confounding), and coincident historical trends (which can induce 

statistically significant-appearing associations between statistically independent 

random walks – a phenomenon sometimes dubbed spurious regression) (Rothman et 

al., 2012; Cox et al., 2013).  

Finally, qualitative subjective judgments and ratings used in many WoE systems are 

subject to well-documented psychological biases. These include confirmation bias 

(seeing what we expect to see and discounting or ignoring what challenges our 

preconceptions); motivated reasoning (finding what it benefits us to find and 

believing what it pays us to believe); and over-confidence (not sufficiently doubting, 

questioning, or testing our own beliefs, and hence not seeking potentially 

disconfirming information that might cause us to revise what we believe) 

(Kahneman, 2011; Sarewitz, 2012).  

Despite these limitations, there is much of potential value in several WoE 

considerations (Rhomberg et al., 2013), especially consistency, specificity, and 

temporality of associations, if they can be freed from the context of qualitative 

subjective judgments and used as part of a more objective, quantitative, data-driven 

approach to inferring probable causation. This possibility is discussed in the 

following sections.  
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Some Limitations of Quantitative Risk Assessment (QRA) for Health 
Effects of Exposures 

In the United States, regulatory risk assessments of the health effects attributed to 

exposures are often conducted according to the following six-step process, which 

corresponds closely to the process followed by EPA in its ozone risk assessment: 

1. Establish that there is a statistically significant positive association between one 

or more measures of exposure (e.g., cumulative exposure) and one or more 

measures of risk (e.g., age-specific mortality risk), e.g., using meta-analyses of 

multiple individual studies that report such associations.  

2. Estimate the quantitative magnitude of the association between exposure and 

risk, e.g., via a significant positive regression coefficient. 

3. Judge whether the association is (probably) causal, based on expert evaluation of 

weight-of-evidence (WoE) considerations such as the strength, consistency, 

gradient, temporality, biological plausibility, etc. of the association. 

4. Predict the reduction in risk for a proposed reduction in exposure, e.g., by 

applying the regression coefficient using the formula ∆𝑅𝑖𝑠𝑘 =  𝐾 ∗ ∆𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 

where ∆𝑅𝑖𝑠𝑘 is the estimated reduction in risk caused by a reduction in exposure 

(∆𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒), and 𝐾 is the regression coefficient (“potency”) linking the 

exposure and risk metrics. 

5. Show that alternative models (within one or more classes of models) do not 

provide a significantly better fit to the data than the model (typically, a best-

fitting model in some class of models) selected to project risk reductions caused 

by exposure reductions. Although many hypotheses about model form might be 

considered for purposes of sensitivity analysis, using a best-fitting model on 

which to base conclusions is standard practice. 

6. Use uncertainty intervals (e.g., 95% confidence intervals) to quantify 

uncertainties about the likely reduction in risk caused by a proposed reduction in 

exposures. Part of responsible risk assessment and communication is to 

characterize uncertainties about the conclusions. A 95% confidence interval for 

risk reduction indicates a range, due to sampling variability, of risk reductions 

that might be expected (with 95% statistical confidence) to include the actual 

reduction in risk in response to a proposed reduction in exposures, if the selected 

model and underlying assumptions are all correct. Other sources of potential 

errors, such as errors in exposure estimates, uncertainty about model form, 
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possible confounders (e.g., smoking), possible selection bias in the data, etc. 

should also be discussed.  

Despite their widespread acceptance, these six steps produce quantitative risk 

assessment (QRA) numbers that have no known or necessary relation to the risks 

actually caused by exposure, largely because they do not adequately model causation 

and uncertainties. Key challenges at each step are as follows. 

 In Step 1, a statistically positive ER association can always be created by a 

combination of large sample size and incorrect model specifications, as well as 

by other possible explanations already mentioned such as coincident historical 

trends, data selection biases, model selection biases, and confounding. For 

example, fitting the line 𝑅𝑖𝑠𝑘 =  𝐾 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 to any data set consisting of 

positive values of Exposure and corresponding Risk estimates will always 

produce a positive estimate of the potency parameter K, even if Exposure has no 

effect on Risk (or has a negative effect). If the sample size is large enough, this 

positive association will always be statistically significantly greater than zero.  

Other, less obviously biased, modeling choices, specification errors, and 

selection biases can likewise generate statistically “significant” positive 

associations under the implicit assumption that the selected model describes the 

data approximately correctly, whether or not there is any true association in the 

data (e.g., discoverable using “model-free” non-parametric tests). As emphasized 

by Dominici et al. (2014), both significant positive and significant negative ER 

relations, depending on modeling choices. Therefore, unless model diagnostics 

(e.g., plots of residuals) are presented (Greenland, 1989; Maldonado and 

Greenland, 1993) that show that a model provides an appropriate description of 

the data to which it is applied, there is no way for readers of reported results to 

know whether a reported significant positive association based on regression 

modeling or other models has resulted from a real pattern in the data, or from 

fitting a mis-specified model to the data, or perhaps from some other reason such 

as residual confounding by a categorized continuous confounder. Yet, too often, 

QRAs and the key studies on which they are based present no model diagnostics, 

and instead offer only sensitivity analyses and goodness-of-fit measures that do 

not sharply test modeling assumptions and that lack the power to reveal 

important model specification errors.  

 Step 2, quantification of regression of coefficients or other measures of 

association, is irrelevant for making causal predictions if the association in Step 1 

is not causal. (See discussion of Figure 2.) 
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 Step 3, judging whether an association is causal, invites experts to substitute their 

own beliefs, opinions, or judgments for rigorous causal analysis. There is no 

reason to believe that the resulting opinions will necessarily or usually be useful 

guides to the truth. Experts (like other people) are notoriously poor at correctly 

judging causation (Kahneman, 2011). Moreover, the associations that they are 

asked to form causal judgments about typically do not contain the essential 

information needed to draw valid inferences about causation, so that there is no 

legitimate basis for offering judgments about whether they are causal. That 

experts are able and willing to offer opinions on many questions, including 

nonsensical ones (such as how old is the current king of France, or what is the 

probability that an association is causal, the first of which mistakenly assumes 

that there is a current king of France and the second of which mistakenly 

assumes that an association is either entirely causal or not), does not make their 

judgments useful or trustworthy.  

Although expert elicitation procedures today typically train experts on calibration 

and try to reduce over-confidence (Hora, 2007), they usually do not provide 

training on valid causal inference. As a result, experts often make confident 

causal judgments (e.g., Harvard School of Public Health, 2002) that are 

statistically naïve (e.g., ignoring comparisons to control groups) and that 

subsequently prove to be blatantly false (e.g., HEI, 2013). This holds not only for 

health effects of exposures, but also in other application domains, such as expert 

opinions about political, military, and world events.  

When expert judgments and predictions have been evaluated in hindsight, after 

the truth is learned, they turn out to be, on average, slightly worse than random 

guesses, with the more famous experts tending to be less accurate (but to have 

more interesting and plausible-sounding rationales for their predictions) 

(Kahneman, 2011, citing prior work by Tetlock). This puts a considerable burden 

of proof on risk assessors who use expert judgments in place of more objective, 

data-driven methods to show that expert judgments about causation are 

trustworthy.  

 Step 4 is not valid: the slope of an exposure-response (ER) regression relation 

does not necessarily predict how (or whether) future responses would change if 

future exposure were changed, as discussed further for the example in Figure 2. 

Valid predictions about reductions in health risks caused by reductions in 

exposure require a different type of study design and a different type of analysis 

– causal study design and causal analysis – than the association-based approach 

in steps 1-6. 
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 Step 5, selection of a “best” model, understates model uncertainty. It leads to 

predictions and confidence intervals that do not account for the fact that even the 

“best” model (based on goodness-of-fit or other criteria) is almost certain to be 

wrong when there is a lot of model uncertainty. Model ensemble methods, such 

as Bayesian model averaging (BMA), consider the results from many (e.g., 

thousands or tens of thousands) of plausible models to avoid making model-

based predictions overly dependent on the selection of one or a few models that 

are probably wrong. They typically lead to more accurate predictions, wider 

confidence intervals, and fewer false positives than the traditional approach of 

selecting a single “best” model (Hoeting et al., 1999). They avoid the 

fundamental error of treating one or a few finally selected models as if they were 

known to be correct, for purposes of calculating confidence intervals and 

significance levels.  

 Step 6, presentation of uncertainty intervals around best estimates for the risk 

caused by exposure, or the risk that can be removed by reducing exposure, is 

misleading highly misleading in the usual case where the presented interval 

ignores model uncertainty and where no discrete probability (a positive fraction 

greater than zero) is presented for the discrete possibility that reducing exposure 

would not reduce risk because there is no causal relation between them.  

As just discussed, ignoring model uncertainty by selecting a single model biases 

conclusions toward false-positive findings (since confidence intervals that would 

include “no effect” if model uncertainty were accounted for are incorrectly 

narrowed) (e.g., Piegorsch, 2013; Swartz et al., 2001; Viallefont et al., 2001). 

Methods for overcoming this bias by including multiple plausible models in the 

calculation of results are now widely available (e.g., Piegorsch, 2013 and 

references therein) and should be used unless the data-generating process is 

understood well enough so that a single model that describes it well can be 

identified. 

To illustrate the crucial difference between association-based inference and causal 

analysis and inference for exposure-response relations, imagine a population in 

which people with elevated risk of heart attacks tend to consume significantly more 

baby aspirin than people without elevated risks of heart attack. In that scenario, 

association-based risk assessment following steps 1-6 (with a mistaken assumption 

or belief that the association is causal) would lead to a confident statistical prediction 

that reducing the level of baby aspirin consumption would reduce heart attack risk. 

However, there is in fact no valid basis for such a conclusion: the association 

between levels of baby aspirin consumption and heart attack risk contains no relevant 
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information for predicting how changes in consumption would change heart attack 

risk.  

As another example, consider the linear association between per-capita phone 

ownership and coronary heart disease (CHD) mortality risk shown in Figure 2.  

 

 

 

An association-based risk assessment might conclude on the basis of such evidence 

of a strong, linear, no threshold exposure-response (ER) relation that reducing 

exposure to phones would reduce CHD mortality risk. The slope of the line in Figure 

2 would then give a quantitative estimate of the incremental reduction in mortality 

per unit reduction in per-capita phone ownership. But such causal interpretations and 

predictions are not valid and cannot be justified by associational data.  

By contrast, statistical associations in historical data can be useful for predicting 

observed values of one variable from observed values of another. Indeed, predicting 

values (especially, past values) of one variable from past values of another is 

precisely what regression models are useful for. But most QRAs purport to answer a 

very different type of question, about future changes in health that would be caused 

by proposed future changes in exposure levels – not about historically observed 

levels of health based on historically observed levels of exposure. It is this type of 

causal inference which cannot legitimately be based on associations.  

Figure 2. A strong, consistent, linear, no-threshold relation between exposure and 

mortality risk does not imply that reducing exposure would reduce risk. 

Source: http://ocw.tufts.edu/Content/1/readings/193106 

 

http://ocw.tufts.edu/Content/1/readings/193106
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The statistical relation in Figure 2 could be used correctly to predict the level of CHD 

mortality risk in a population based on the level of phone ownership per capita. (A 

possible mechanism for the association might be that both are associated with a third 

factor or variable, such as stress levels or dietary factors, although no such 

explanation need be known to make an empirical association useful for predicting 

the level of one variable from the level of another, correlated variable.) This is a 

perfectly good use of statistical inference, but it implies nothing about how changing 

one variable would change the other. 

The key point illustrated by such examples is not simply the truism that association 

is not causation. Rather, the key point is that the information contained in 

associations between historical levels of exposure and levels of adverse response is 

not what is needed to draw valid causal conclusions about how future changes in 

exposures will change future levels of risk. An implication is that expert judgments 

about causation based on such associations are not well founded: the associations do 

not carry the information needed to draw sound inferences about causation, and so 

neither do expert opinions or interpretations derived from them. What is required 

instead is information on how changes in inputs (such as exposures) propagate 

through causal pathways to produce changes in outputs (such as mortality rates). 

Without such information on propagation of changes, statistical associations are 

powerless to give valid causal predictions, including predicting whether reducing 

exposures will reduce risks, and, if so, by how much (Freedman, 2004).  

A second implication is that a positive, increasing ER relation such as that in Figure 

2 gives no insight into what the causal relation between exposure and response (if 

there is one) might look like. The causal ER relation could have a threshold, or be J-

shaped (flat or negative slope at very low exposures, positive slope at higher 

exposures), or have a flat or even a negative slope throughout, and yet these 

characteristics would be obscured by the positive statistical association, which does 

not isolate the causal component (if any) of the empirical ER association.  

This crucial methodological point—that statistical associations do not in general 

convey information useful for making valid causal predictions—has been well 

understood for over a decade by statisticians and epidemiologists specializing in 

technical methods for causal analysis (e.g., Greenland and Brumback, 2002; 

Freedman, 2004). This understanding strengthens warnings that associations do not 

prove causation (e.g., Samet and Bodurow, 2008) by showing that they need not be 

informative about causation. It is only slowly percolating through the larger 

epidemiological and risk analysis communities, however. Peer-reviewed published 

papers and authoritative reports, including those relied on in many regulatory QRAs, 
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still make the fundamental mistake of reinterpreting empirical exposure-response 

(ER) associations between historical levels of exposure and response as if they were 

causal relations useful for predicting how changes in exposures would change 

responses. This confusion is unnecessary: appropriate technical methods for causal 

analysis and modeling are now well developed, and can be applied to the same kinds 

of cross-sectional and longitudinal data collected for association-based studies. Table 

1 summarizes some of the most useful study designs and methods for valid causal 

analysis and modeling of causal exposure-response relations.  

Particularly harmful is that many authoritative sources propagate the delusion, 

peculiar to epidemiology (Morabia, 2013), that somehow associations alone can 

suffice to establish causation, if only they are qualified with enough laudatory 

adjectives (the association is strong, consistent, plausible, etc.) This is a mistake. For 

example, Samet and Bodurow (2008) present a table that begins as follows: 

 

Source: www.nap.edu/openbook.php?record_id=11908&page=186 

It should be clear that the characterization of “Sufficient evidence of a causal 

relationship” offered here is wrong: as suggested by counter-examples such as Figure 

2 (and recognizing that “biological plausibility” is often in the eye of the beholder, 

with more associations perhaps seeming plausible to those who know least), it is 

easy for statistical associations to satisfy all of these conditions, and yet not be 

causal.

http://www.nap.edu/openbook.php?record_id=11908&page=186
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Table 1. Some formal methods for modeling and testing causal hypotheses  

Method and References Basic Idea Appropriate study 

design 

Conditional 

independence tests 

(Freedman, 2004, 

Friedman and 

Goldszmidt, 1998) 

Is hypothesized effect (e.g., lung cancer) 

statistically independent of hypothesized cause 

(e.g., exposure to crystalline silica), given values of 

other variables (e.g., education and income)? If so, 

this undermines causal interpretation. 

Cross-sectional data 

Can also be applied to 

multi-period data (e.g., 

in dynamic Bayesian 

networks) 

Panel data analysis 

(Angrist and Pischke, 

2009, Stebbings, 1976) 

Are changes in exposures followed by changes in 

the effects that they are hypothesized to help cause? 

If not, this undermines causal interpretation; if so, 

this strengthens causal interpretation. 

Example: Are changes in crystalline silica exposure 

levels in different quarries followed (but not 

preceded) by corresponding changes in respiratory 

mortality rates? 

Panel data study: 

Collect a sequence of 

observations on same 

subjects or units over 

time 

Granger causality test 

(Eichler and Didelez, 

2010) 

Does the history of the hypothesized cause improve 

ability to predict the future of the hypothesized 

effect? If so, this strengthens causal interpretation; 

otherwise, it undermines causal interpretation. 

Example: Can lung cancer mortality rates in 

different occupational groups be predicted better 

from time series histories of crystalline silica levels 

and mortality rates than from the time series history 

of mortality rates alone? 

Time series data on 

hypothesized causes 

and effects 

Quasi-experimental 

design and analysis 

(Campbell and Stanley, 

1966) 

Can control groups and other comparisons refute 

alternative (non-causal) explanations for observed 

associations between hypothesized causes and 

effects? For example, can coincident trends and 

regression to the mean be refuted as possible 

explanations? If so, this strengthens causal 

interpretation. 

Longitudinal 

observational data on 

subjects exposed and 

not exposed to 

interventions that 

change the 

hypothesized cause(s) 

of effects. 

Intervention analysis, 

change point analysis 

(Helfenstein, 1991; 

Gilmour et al., 2006) 

Does the best-fitting model of the observed data 

change significantly at or following the time of an 

intervention? If so, this strengthens causal 

interpretation. 

Time series 

observations on 

hypothesized effects, 

and knowledge of 
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Do the quantitative changes in hypothesized causes 

predict and explain the subsequently observed 

quantitative changes in hypothesized effects? If so, 

this strengthens causal interpretation. 

Example: Did lung disease mortality rates fall 

significantly faster or sooner in workplaces that 

reduced exposures more or earlier than in 

workplaces that did not? 

timing of 

intervention(s) 

 

Quantitative time 

series data for 

hypothesized causes 

and effects 

Counterfactual and 

potential outcome 

models (Robins et al. 

2000; Moore et al., 

2012) 

Do exposed individuals have significantly different 

response probabilities than they would have had if 

they had not been exposed? 

Example: Do workers have lower mortality risk 

after historical exposure reductions than they would 

have had otherwise?  

Cross-sectional and/or 

longitudinal data, with 

selection biases and 

feedback among 

variables allowed 

Causal network models 

of change propagation 

(Hack et al., 2010, Dash 

and Druzdzel, 2008) 

Do changes in exposures (or other causes) create a 

cascade of changes through a network of causal 

mechanisms (represented by equations), resulting in 

changes in the effect variables? 

Observations of 

variables in a dynamic 

system out of 

equilibrium  

Negative controls (for 

exposures or for effects) 

(Lipsitch et al., 2010) 

Do exposures predict health effects better than they 

predict effects that cannot be caused by exposures 

(e.g., reductions in traumatic injuries)?  

Observational studies 

Although they are not adequate for valid causal inference or QRA, statistical and 

epidemiological methods based on associations (e.g., relative risks, odds ratios, 

logistic regression of Cox proportional hazards coefficients, etc.) are far from 

useless. Although they usually cannot deliver valid causal predictions about the 

effects on responses caused by changes in exposures—the main requirement for 

sound risk assessment and risk management—they can, when carefully implemented, 

support valid inferences about the expected past historical values (or conditional 

distributions) of some quantities, such as mortality rates, given the measured values 

of other historical quantities, such as exposure levels. The technology for drawing 

statistical inferences about the likely values of some variables, given the values of 

others (e.g., based on maximum-likelihood, best-fit, or conditional probability 

distributions or expected values), is now extremely well developed and sophisticated, 

but it should not be confused with the quite different technology of causal analysis 

and modeling needed for purposes of valid QRA (e.g., Table 1).   
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Association-Based QRAs commonly produce false-positive results. 

In practice, QRAs based on some or all of steps 1-6, routinely produce a large excess 

of false-positive errors, both in published results and in confident public assertions 

about the health benefits expected from various interventions. That is, they predict 

beneficial effects from interventions that turn out to reflect motivated reasoning, 

confirmation bias and other biases by investigators, and that do not hold in reality 

(e.g., Lehrer, 2012, Sarewitz, 2012, Ottenbacher, 1998; Imberger et al., 2011). 

Scientists with subject matter expertise in health effects epidemiology for specific 

chemicals are not necessarily or usually also experts in causal analysis and valid 

causal interpretation of data, and their causal conclusions are often mistaken, with a 

pronounced bias toward declaring and publishing findings of “significant” effects 

where none actually exists (false positives).  

This has led some commentators to worry that “science is failing us,” due largely to 

widely publicized but false beliefs about causation (Lehrer, 2012); and that, in recent 

times, “Most published research findings are wrong” (Ioannadis, 2005), with the 

most sensational and publicized claims being most likely to be wrong. These 

important policy-relevant limitations of association-based risk assessments and 

epidemiological studies have been increasingly well recognized by specialists in 

recent decades (e.g., Ottenbacher, 1998), but have only recently started to attract 

much attention in the mainstream press (e.g., Lehrer, 2012; The Economist, October, 

2013). To overcome them, it is probably crucial to pivot from reliance on expert 

judgments about causation to greater reliance on more objective methods, such as 

those in Table 1. 

Association-Based QRA does not answer critical questions for risk 
management. 

The numbers produced by the regulatory risk assessment framework using steps 1-6 

also fail to address key questions that should be answered in informing any 

responsible risk management decision or regulatory action. Among them are the 

following. 

 What fraction of the association-based ER relations is causal? As already 

discussed, ER associations are unlikely to be entirely causal, since some fraction 

of association probably results from coincident historical trends (e.g., both 

pollution levels and disease rates have declined in recent decades, apart from any 

causal relation between them), confounding (e.g., both pollution levels and 

elderly mortality rates may be elevated on extremely hot summer days and 

extremely cold winter days, apart from any causal relation between them), and 

http://www.economist.com/news/briefing/21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble
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biases (e.g., excess false positives in published results, as just discussed). It is 

therefore important to quantify how large is the causal fraction, and how sure we 

can be about the answer. Steps 1-6 leave this unaddressed, usually asking experts 

instead (in Step 4) to opine about whether associations are causal.  

 What is the probability that the health benefits caused by a proposed reduction in 

exposures will be less than the lowest estimated values? Focusing on “best-fit” 

models (often within a few parametric classes, none of which necessarily 

describes the true but unknown ER relation) does not answer the key question of 

how wrong the predictions are likely to be. Might the true benefits be less than 

10% as large as the smallest estimated ones? How likely is this? How likely is it 

that the true benefits are zero, or less than 1% as large as those estimated?  

There is no way to answer such decision-relevant questions based solely on 

modeling assumptions and choices having uncertain validity, along with 

confidence intervals calculated using those assumptions. (By contrast, a well-

executed QRA using the methods in Table 1 would provide estimates or bounds 

for the posterior probability of different effects sizes caused by a proposed 

reduction in exposure.) Too many studies are silent about the probability that 

their best predictions are mistaken, and about the potential size of the mistakes. 

Yet, such information is crucial for rational risk management (e.g., working 

within the expected utility model of rational choice among alternative actions 

with uncertain consequences). 

 What is the probability that reducing exposures below the current permissible 

exposure level will not yield any incremental human health benefits? 

 Is the totality of available evidence more consistent with the null hypothesis that 

future reductions in exposures will not reduce risk, or with the alternative 

hypothesis that they will? This is similar to the previous question, but focuses on 

comparing the evidence for each of the two disjoint hypotheses, rather than on 

assessing their probabilities. (Technically, this question might be addressed via a 

likelihood ratio calculation rather than via a Bayesian posterior probability 

calculation.)  

QRAs often focus primarily on building a case for the alternative hypothesis, and 

on (mis)using associational data to develop estimates of the change in health risk 

that would be caused by a further reduction in exposures if the association 

between them were entirely causal and were correctly described by the QRA’s 

assumed models. Too often, they neglect to evaluate whether the same data are 
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equally or more consistent with the null hypothesis that further reductions in 

exposure will have no effect on human health, and that ER associations are due 

entirely to non-causal explanations such as data selection biases, modelling 

choices, coincidental but not causal historical trends in exposure and health 

effects, and so forth. 

In summary, steps 1-6 do not answer the questions that a sound QRA should address: 

what are the probable consequences of alternative actions, such as making or not 

making a proposed reduction in exposure levels? Moreover, the numbers that they 

produce are based on historical associations that usually have no known predictive 

value and no basis for being interpreted as causal. Reinterpreting them as if they 

were derived from sound causal analysis and modeling is unwarranted. Using them 

to project reductions in future morbidity and mortality rates that would be caused by 

proposed reductions in exposure levels is not justified in the absence of sound causal 

analysis and modeling.  

Thus, even if steps 1-6 are executed flawlessly, the resulting numbers do not support 

valid causal interpretations and predictions. As indicated in Table 1, many methods 

are available that address the challenges of quantifying causal relations and 

uncertainties about them without invoking expert judgments about the causal 

significance of associations. These are examined next. 

Valid Methods for Establishing Probable Causation 

Over the past century, the following main ideas have been developed, largely outside 

epidemiology, to determine whether available knowledge and data warrant an 

inference that exposure probably causes adverse health effects. 

Causes precede their effects 

If significant changes in exposures always precede and help to explain and predict 

subsequent significant changes in health effects, this is consistent with the hypothesis 

that the former cause the latter. To formally test whether this is the case, change-

point analysis (CPA) algorithms estimate the times of changes in effects time series 

(e.g., http://surveillance.r-forge.r-project.org/; James and Matteson, 2014). These 

times can then be compared to the times at which exposures changed (e.g., due to 

passage of a regulation, opening or closing of a pollution source, etc.) to determine 

whether changes in exposures are followed by changes in effects. 

Similarly, intervention analysis algorithms (also called interrupted time series 

analysis algorithms) test whether effects time series change following changes in 

exposures that occur at known times. Finally, Granger causality tests provide formal 

http://surveillance.r-forge.r-project.org/
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quantitative tests of the hypothesis that the future of the health effects time series can 

be predicted better using the exposure time series than it can be predicted without 

using the exposure time series. If this is not the case, then the exposure-response 

histories provide no evidence that exposure is a (Granger) cause of the effects time 

series, no matter how strong, consistent, etc. the association between their levels over 

time may be.  

Causes are informative about their effects 

If exposure is a cause of increased disease risk, then measures of exposure and 

response (i.e., disease risk) should provide mutual information about each other that 

allows either to be predicted from the other (i.e., the conditional probability 

distribution for either one varies with the value of the other). Moreover, it should not 

be the case that the mutual information between exposure and response can be 

eliminated by conditioning on the values of other variables, such as confounders, if 

exposure is a cause of the response. This is the basis for using formal statistical 

conditional independence tests as tests of causal hypotheses: An effect should never 

be conditionally independent of its direct causes, given the values of other variables. 

Changes in causes produce changes in effects via causal mechanisms 

Perhaps the most useful and compelling valid evidence of causation (with the 

possible exception of well-conducted randomized control trials) consists of showing 

that changes in exposures propagate through a network of validated law-like 

equations or mechanisms to produce predictable changes in effects (e.g., health 

responses). For example, showing that measured changes in ambient levels of 

pollution produce consistent corresponding changes in lung inflammation markers, 

recruitment rates of alveolar macrophages and activated neutrophils to the inflamed 

lung, levels of enzymes released by these cell populations that degrade the alveolar 

wall, and resulting rates of lung tissue loss and scarring and onset of inflammation-

mediated diseases, would provide compelling evidence of a causal relation between 

changes in exposures and changes in disease rates.  

Structural equation models (SEMs) in which changes in right-hand side variables 

cause adjustments of left-hand side variables to restore equality provide one way of 

describing mechanisms for situations where the precise time course of the adjustment 

process is not of interest. Differential equation models, in which changes in flow 

rates lead to changes in the equilibrium levels of variables for different 

compartments provide another, complementary way to describe mechanisms when 

the time course of adjustment is of interest. Figure 3 presents a high-level view of the 

structure of a simulation model for cardiovascular disease (CVD) outcomes; these 
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provide still a third way to describe and model the propagation of changes through 

causal networks. 

 

Figure 3. Simulation model for cardiovascular disease (CVD) outcomes. This diagram 

depicts major health conditions related to CVD and their causes. Boxes identify risk 

factor prevalence rates modeled as dynamic stocks. The population flows associated 

with these stocks — including people entering the adult population, entering the next 

age category, immigration, risk factor incidence, recovery, cardiovascular event 

survival, and death — are not shown. 

Key: Blue solid arrows: causal linkages affecting risk factors and cardiovascular events 

and deaths. 

Brown dashed arrows: influences on costs. 

Purple italics: factors amenable to direct intervention. 

Black italics (population aging, cardiovascular event fatality): other specified trends. 

Black nonitalics: all other variables, affected by italicized variables and by each other 

Source: Homer J, Milstein B, Wile K, Trogdon J, Huang P, Labarthe D, et al. 

Simulating and evaluating local interventions to improve cardiovascular health. Prev 

Chronic Dis 2010;7(1):A18. http://www.cdc.gov/pcd/issues/2010/jan/08_0231.htm. 

Accessed 3-11-15 

For most of the past century, methods such as path analysis (based on SEMs) have 

been used to explicate causal networks of mechanisms and to provide formal tests for 

http://www.cdc.gov/pcd/issues/2010/jan/08_0231.htm
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hypothesized causal structures. These methods exploit the fact that, if all effects of 

variables on each other can be well approximated by linear regression models, then 

correlations between variables should be strongest when the variables are closer to 

each other along a causal chain than when they are more remote.  

Moreover, the effect of a change in an ancestor variable on the value of a remote 

descendent (several nodes away along one or more causal paths) should be 

decomposable into the effects of the change in the ancestor variable on any 

intermediate variables and the effects of those changes, in turn, on the remote 

descendent variable. Such consistency and coherence constraints can be expressed as 

systems of SEM equations that can be solved to estimate the path coefficients 

relating changes in parent variables to changes in their children.  

Summing these changes over all paths leading from exposure to response variables 

allows the total effect (via all paths) of a change in exposure on changes in expected 

responses to be estimated. Path analysis and other SEM models are particularly 

valuable for detecting and quantifying the effects of unmeasured (“latent”) 

confounders based on the patterns of correlations that they induce among observed 

variables. Standard statistics packages and procedures, such as PROC CALIS in 

SAS, have made this technology available to modelers for the past four decades. 

More recently, causal graph models (including Bayesian networks) have been 

developed, in which mechanisms need not be described by linear models, but may be 

described by nonlinear and probabilistic relations (e.g., the conditional probability 

distributions for the value of a node (i.e., variable) in a causal graph, given the values 

of the variables that point into it). These models greatly extend the flexibility and 

power of causal hypothesis testing and causal predictive modeling.
12

  

These advances are particularly useful for characterizing uncertain causal relations. 

As noted by Samet and Bodurow (2008), “The uncertainty about the correct causal 

model involves uncertainty about whether exposure in fact causes disease at all, 

about the set of confounders that are associated with exposure and cause disease, 

about whether there is reverse causation, about what are the correct parametric forms 

of the relations of the exposure and confounders with outcome, and about whether 

there are other forms of bias affecting the evidence. One currently used method for 

making this uncertainty clear is to draw a set of causal graphs, each of which 

represents a particular causal hypothesis, and then consider evidence insofar as it 

favors one or more of these hypotheses and related graphs over the others.” 

                                                 
12

 www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch25.pdf 
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Valid causal relations cannot be explained away by non-causal 
explanations 

An older, but still useful, approach to causal inference from observational data 

developed largely in the 1960s and 1970s consists of showing that there is an 

association between exposure and response that cannot plausibly be explained by 

confounding, biases (including model and data selection biases and specification 

errors), or coincidence (e.g., from historical trends in exposure and response that 

move together but that do not reflect causation).  

Quasi-experiment design and analysis approaches developed in social statistics 

(Campbell and Stanley, 1966) systematically enumerate potential alternative 

explanations for observed associations (e.g., coincident historical trends, regression 

to the mean) and provide statistical tests for refuting them, if indeed they can be 

refuted. A substantial tradition of refutationist approaches in epidemiology follows 

the same general idea, of providing evidence for causation by using data to explicitly 

test, and if possible refute, other explanations for E-R associations (Maclure, 1991).  

As stated by Samet and Bodurow (2008), “Because a statistical association between 

exposure and disease does not prove causation, plausible alternative hypotheses must 

be eliminated by careful statistical adjustment and/or consideration of all relevant 

scientific knowledge. Epidemiologic studies that show an association after such 

adjustment, for example through multiple regression or instrumental variable 

estimation, and that are reasonably free of bias and further confounding, provide 

evidence but not proof of causation.”
13

  

As we have seen, these authors are overly optimistic in asserting that associations 

that are reasonably free of bias and confounding therefore provide evidence of 

causation (since, for example, the strong, statistically “significant” associations in 

regression models that often occur between levels of statistically independent 

random walks (“spurious regression”) do not arise from confounding or bias, and 

since “In general, regression models for non-stationary variables give spurious 

results” due to coincident historical trends created by random processes that are not 

well described by regression models.
14

 Nonetheless, the recommendation that 

“plausible alternative hypotheses must be eliminated by careful statistical adjustment 

and/or consideration of all relevant scientific knowledge” well expresses the 

refutationist point of view. 

                                                 
13

 www.nap.edu/openbook.php?record_id=11908&page=173  
14

 www.econ.ku.dk/metrics/econometrics2_05_ii/slides/10_cointegration_2pp.pdf  
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Valid causal mechanisms are law-like: consistent and homogeneous 

A proposed causal relation that turns out to be very heterogeneous, sometimes 

showing large significant positive effects and other times no effects or significant 

negative effects for exchangeable individuals under the same conditions, does not 

correspond to a law-like causal relation, and cannot be relied on to make valid causal 

predictions (e.g., by using mean values averaged over many heterogeneous studies). 

A true causal relation can be thought of as a stable relation (e.g., the conditional 

probability table (CPT) for a node in a Bayesian network or causal graph model) that 

gives the same conditional probabilities of output values whenever the input values 

are the same. Unexplained heterogeneity, in which the CPT appears to differ 

significantly when study designs are repeated by different investigators, signals that 

a causal mechanism has not yet been discovered, and that models and the knowledge 

they represent need to be further refined to discover and express predictively useful 

causal relations that reflect genuine causal mechanisms instead of random 

associations. 

These methods for drawing valid causal conclusions suggest the following checklist 

for judging the adequacy of a quantitative health risk assessment (QRA) that claims 

to have identified a useful predictive causal relation between exposure 

concentrations and risk of adverse health effects (responses), i.e., causal exposure-

response (E-R) or concentration-response (C-R) relations. 

1. Does the QRA show that changes in exposures precede – and do not follow 

or coincide with – the changes in health effects that they are said to cause? 

Are results of change-point analyses, intervention analyses, and Granger 

causality tests presented, along with supporting data? (If effects turn out to 

precede their presumed causes, then unmeasured confounders or residual 

confounding by confounders that have been statistically “controlled for” may 

be at work.) 

2. Does the QRA demonstrate that health effects cannot be made conditionally 

independent of exposure by conditioning on other variables (especially, 

potential confounders)? Does it present the details, data, and results of 

conditional independence tests showing that health effects and exposures 

share mutual information that cannot be explained away by any combination 

of confounders? 

3. Does the QRA present and test explicit causal graph models, showing the 

results of formal statistical tests of the causal hypotheses implied by the 

structure of the model (i.e., which variables point into which others, as in 
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Figures 1 or 3)? Does it identify which alternative causal graph models are 

most consistent with available data (e.g., using the Occam’s Window method 

of Madigan and Raftery, 1994)?
15

 Most importantly, does it present clear 

evidence that changes in exposure propagate through the causal graph, 

causing successive measurable changes in the intermediate variables along 

hypothesized causal paths?  

Such coherence, consistency, and biological plausibility demonstrated in 

explicit causal graph models showing how hypothesized causal 

mechanismsdovetail with each other to transduce changes in exposures to 

changes in health risks can provide compelling objective evidence of a causal 

relation between them, thus accomplishing what older and more problematic 

WoE frameworks have long sought to provide(Rhomberg et al., 2015). 

4. Have non-causal explanations for statistical relations among observed 

variables (including exposures, health effects, and any intermediate variables, 

modifying factors, and confounders) been identified and refuted using well-

conducted and reported statistical tests? Especially, have model diagnostics 

(e.g., plots of residuals and discussions of any patterns) and formal tests of 

modeling assumptions been presented that convincingly show that the models 

used appropriately describe the data to which the QRA applies them, and that 

claimed associations are not caused by model selection biases or specification 

errors, failures to model errors in exposure estimates and other explanatory 

variables, omitted confounders or other latent variables, uncorrected multiple 

testing bias, or coincident historical trends (e.g., spurious regression, if the 

exposure and health effects time series in longitudinal studies are not 

stationary)? 

5. Have any causal mechanisms postulated in the QRA modeling been 

demonstrated to exhibit stable, uniform, law-like behavior, so that there is no 

substantial unexplained heterogeneity in estimated input-output (e.g., E-R or 

C-R) relations? 

If the answers to these five questions are all yes, then the QRA has met the burden of 

proof of showing that the available data are consistent with a causal relation, and that 

other (non-causal) explanations are not plausible. The QRA can then proceed to 

quantify the changes in (probability distributions of) outputs, such as future health 

effects, that would be caused by changes in controllable inputs (e.g., exposure 

                                                 
15

 www.stat.cmu.edu/~fienberg/Statistics36-756/MadiganRaftery-JASA-1994.pdf 
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levels). The effort needed to establish valid evidence of a causal relation between 

historical levels of inputs and outputs by being able to answer yes to questions 1-5 

pays off at this stage. Causal graph models (e.g., Bayesian networks), simulation 

models based on composition of validated causal mechanisms, and path diagrams 

and SEM models can all be used to predict quantitative changes in outputs caused by 

changes in inputs, e.g., changes in future health risks caused by changes in future 

exposure levels, given any scenario for the future values of other inputs (e.g., those 

with only outward-pointing arrows in Figure 3).  

If the answer to any of the preceding five questions is no, then it is premature to 

make causal predictions based on the w done so far. Either the additional work 

needed to make the answers yes should be done, or results should be stated as 

contingent on the as-yet unproved assumption that this can eventually be done.  
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