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ABSTRACT 

 

Recent headlines and scientific articles projecting significant human health benefits from 

changes in exposures too often depend on unvalidated subjective expert judgments and modeling 

assumptions, especially about the causal interpretation of statistical associations. Some of these 

assessments are demonstrably biased toward false positives and inflated effects estimates. More 

objective, data-driven methods of causal analysis are available to risk analysts. These can help to 

reduce bias and increase the credibility and realism of health effects risk assessments and causal 

claims.  For example, quasi-experimental designs and analysis allow alternative (non-causal) 

explanations for associations to be tested, and refuted if appropriate.  Panel data studies examine 

empirical relations between changes in hypothesized causes and effects.  Intervention and 

change-point analyses identify effects (e.g., significant changes in health effects time series) and 

estimate their sizes.  Granger causality tests, conditional independence tests, and counterfactual 

causality models test whether a hypothesized cause helps to predict its presumed effects, and 

quantify exposure-specific contributions to response rates in differently exposed groups, even in 

the presence of confounders.  Causal graph models let causal mechanistic hypotheses be tested 

and refined using biomarker data.  These methods can potentially revolutionize the study of 

exposure-induced health effects, helping to overcome pervasive false-positive biases and move 

the health risk assessment scientific community toward more accurate assessments of the impacts 

of exposures and interventions on public health.    

 

KEY WORDS:  Accountability research, causality, causal modeling, Granger tests, panel data, 

intervention analysis, change-point analysis, causal graphs, counterfactual models  
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Introduction: The Challenge of Causal Inference in Risk Analysis 

Public health risk managers and policy makers are frequently presented with conflicting 

accounts of how the world works, and are urged by various interest groups – often passionately – 

to take different prompt, decisive actions based on these rival causal theories.  Members of 

Congress are implored by many climate scientists to do more to curb climate change, before it is 

too late.  Simultaneously, other groups beseech them not to spend resources on expensive actions 

that might create no, or little, or uncertain, benefits.   While many financial economists and risk 

analysts call for tighter regulation of complex financial instruments, or better-funded public 

safety nets for big banks, or quicker and larger stimulus expenditures, others warn that these 

efforts risk exacerbating the problems they are meant to solve.  Experts in development 

economics are split between those who encourage increasing aid payments to poor countries to 

jump-start their economies, and those who say that such transfers merely cement the wealth and 

power, and contribute to the corruption, of existing power elites.  In these and countless other 

disagreements, both sides usually have more-or-less plausible stories about how different actions 

will cause different consequences, but their stories do not agree.  This puts risk managers and 

policy makers in the uncomfortable position of having to assess the credibility of different causal 

theories – a task for which compelling data, decisive expertise, and provably useful training are 

often in short supply.     

Two natural reactions to the challenge of judging among rival causal theories are to trust 

one’s common sense and intuition, deferring to gut feel when cognition must admit defeat; and to 

rely on trusted scientific experts, who specialize in the relevant technical disciplines, for candid 

advice about the probable consequences caused by different choices.  But modern scholarship 

has diminished the luster and apparent trustworthiness of both intuitive and expert judgments in 

matters of causation. Psychologists have shown convincingly that all of us, including experts in 

science and statistics, are prone to over-confidence in our own judgments; misattribution of 

causes; excessive inclination to blame people instead of situations; affect bias (in which 

emotional responses color our beliefs about facts, inclining us toward causal theories that agree 

with our intuitive perceptions of what is good or bad); motivated reasoning (which prompts us to 

believe whatever seems most profitable for us to believe); and confirmation bias (which leads us 

to see only what we expect, and to seek and interpret information selectively to reinforce our 
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beliefs, rather than to learn from reality) (Fugelsang, 2004; Gardner, 2009; Sunstein, 2009).  For 

over a decade, the peer-reviewed scientific literature on risks and causes has been found to 

reflect these very human biases, with a large excess of false-positive errors in published results 

and in confident public assertions about health effects of various interventions (Sarewitz, 2012, 

Ottenbacher, 1998; Imberger et al., 2011).  Attempts that fail to replicate published results may 

carry little professional or academic reward, undermining incentives to try to independently 

replicate key claims (Sarewitz, 2012; Yong, 2012).  Scientists with deep subject matter expertise 

are not necessarily or usually also experts in causal analysis and valid causal interpretation of 

data, and their causal conclusions are often mistaken.  This has led some commentators to worry 

that “science is failing us,” due largely to widely publicized but false beliefs about causation 

(Lehrer, 2012); and that, in recent times, “Most published research findings are wrong” 

(Ioannadis, 2005), with the most sensational and publicized claims being most likely to be 

wrong. 

To feel the pull of rival causal theories, consider the contrasting accounts of public health 

effects caused by air pollution, shown in Table 1.  On the left are quotes from studies usually 

interpreted as showing that exposure to air pollutants (mainly, fine particulate matter (PM2.5)) 

causes increased risks of adverse health effects (e.g., Pope, 2010), along with some quantitative 

risk estimates for these effects.  On the right are caveats and results of studies suggesting that 

these associations may not be causal after all.  Both seem more or less plausible at first glance.   

 

Table 1. Some examples of conflicting claims  

about health effects known to be caused by air pollution 

Pro (causal interpretation or claim) Con (counter-interpretation or claim) 

“Epidemiological evidence is used to quantitatively 

relate PM2.5 exposure to risk of early death. We 

find that UK combustion emissions cause 13,000 

premature deaths in the UK per year, while an 

additional 6000 deaths in the UK are caused by 

non-UK European Union (EU) combustion 

emissions” (Yim and Barrett, 2012). 

 

“[A]lthough this sort of study can provide useful 

projections, its results are only estimates. In 

particular, although particulate matter has been 

associated with premature mortality in other 

studies, a definitive cause-and-effect link has not 

yet been demonstrated” (NHS, 2012) 
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“[A]bout 80,000 premature mortalities [per year] 

would be avoided by lowering PM2.5 levels to 5 

g/m
3
 nationwide” in the U.S.  2005 levels of 

PM2.5 caused about 130,000 premature mortalities 

per year among people over age 29, with a 

simulation-based 95% confidence interval of 

51,000 to 200,000 (Fann et al., 2012). 

“Analysis assumes a causal relationship between 

PM exposure and premature mortality based on 

strong epidemiological evidence… However, 

epidemiological evidence alone cannot establish 

this causal link” (EPA, 2011, Table 5-11). 

 

Significant negative associations have also been 

reported between exposures to some pollutants 

(e.g., NO2 (Kelly et al., 2012), PM2.5 (Krstić 

2010) and ozone (Powell et al., 2012)) and short-

term mortality and morbidity rates.     

 

“Some of the data on the impact of improved air 

quality on children’s health are provided, 

including…  the reduction in the rates of childhood 

asthma events during the 1996 

Summer Olympics in Atlanta, Georgia, due to a 

reduction in local motor vehicle traffic” (Buka et 

al., 2006).  “During the Olympic Games, the 

number of asthma acute care events decreased 

41.6% (4.23 vs 2.47 daily events) in the Georgia 

Medicaid claims file,” coincident with significant 

reductions in ozone and other pollutants (Friedman 

et al., 2001).   

“In their primary analyses, which were adjusted for 

seasonal trends in air pollutant concentrations and 

health outcomes during the years before and after 

the Olympic Games, the investigators did not find 

significant reductions in the number of emergency 

department visits for respiratory or cardiovascular 

health outcomes in adults or children.”  In fact, 

“relative risk estimates for the longer time series 

were actually suggestive of increased ED 

[emergency department] visits during the Olympic 

Games” (Health Effects Institute, 2010) 

 

 “An association between elevated PM10 levels and 

hospital admissions for pneumonia, pleurisy, 

bronchitis, and asthma was observed. During 

months when 24-hour PM10 levels exceeded 150 

micrograms/m3, average admissions for children 

nearly tripled; in adults, the increase in admissions 

was 44 per cent.” (Pope, 1989)   

 “Respiratory syncytial virus (RSV) activity was 

the single explanatory factor that consistently 

accounted for a statistically significant portion of 

the observed variations of pediatric respiratory 

hospitalizations. No coherent evidence of residual 

statistical associations between PM10 levels and 

hospitalizations was found for any age group or 

respiratory illness.”  (Lamm et al., 1996) 

 

“Reductions in respiratory and cardiovascular death 

rates in Dublin suggest that control of particulate 

air pollution could substantially diminish daily 

death....Our findings suggest that control of 

particulate air pollution in Dublin led to an 

immediate reduction in cardiovascular and 

respiratory deaths.” (Clancy et al., 2002)  "The 

results could not be more clear, reducing particulate 

air pollution reduces the number of respiratory and 

cardiovascular related deaths immediately" 

(Harvard School of Public Health, 2002). 

The same rate of reduction in death rates was 

already occurring long before the ban, and occurred 

in other parts of Europe and Ireland not affected by 

it. “Serious epidemics and pronounced trends feign 

excess mortality previously attributed to heavy 

black-smoke exposure” (Wittmaack, 2007). “Thus, 

a causal link between the decline in mortality and 

the ban of coal sales cannot be established” 

(Pelucchi et al., 2009).   
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If one’s own judgment, scientific expert opinion, and the authority of peer-reviewed 

publications are all suspect as guides to the truth about such basic questions as whether air 

pollution caused adverse health effects in these studies, then how might one more objectively 

determine what causal conclusions are warranted by available facts and data?  A common 

approach in epidemiology is to use statistical tests to determine whether there is strong evidence 

for a non-random positive association between exposure and response, and then to check 

whether, in the judgment of knowledgeable experts, the association can correctly be described by 

adjectives such as “strong,” “consistent,” “specific,” “temporal,” and “biologically plausible.” 

The problem with this very popular approach is that all of these (and other) laudatory adjectives 

can apply perfectly well to associations even when there is no causation. Such associations can 

be created by strong confounders with time delays; or by data- and model-selection biases; or by 

unmodeled errors in exposure estimates; or by regression to the mean, or contemporaneous 

historical trends, or a host of other well-known threats to valid causal inference (Campbell and 

Stanley, 1966; Cox, 2007).  Applying adjectives to associations, as proposed in the thoughtful 

and influential work of Sir Bradford Hill, and as subsequently implemented in many weight-of-

evidence schemes, does not overcome the basic limitation that an association is still only an 

association. Even the best qualified association may not reveal anything about causation, 

including the correct sign (positive or negative) of the causal influence of exposure on risk, if 

there is one.   For example, if elderly people consume more baby aspirin than younger people to 

reduce their risk of heart attacks, then level of aspirin consumption might be significantly 

positively associated with increased risk of heart attack, even if increasing aspirin consumption 

would cause reduced heart attack risk at every age.   

More generally, causality in risk analysis is not mainly about statistical associations 

between levels of passively observed variables; but rather about how changes, if made, would 

propagate through systems (Druzdzel and Simon, 1993; Greenland and Brumback, 2002). This 

distinction should be of critical importance to risk analysts advising policy makers on the 

probable consequences of proposed interventions, and also to policy makers considering how 

much weight to give such advice. As a real-world example of how much it matters, mortality 

rates among the elderly tend to be elevated where and when fine particulate pollutant 

concentrations are highest among 100 U.S. cities (namely, in cities and months with cold winter 
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days), and yet changes in these pollutant concentration levels from one year to the next are 

significantly negatively associated with corresponding changes in mortality rates, undermining 

any straightforward causal interpretation of the positive association between pollutant levels and 

mortality rates (Cox, 2012).  Yet, this crucial distinction is often glossed over in the current 

language and presentation of health risk assessment results.  For example, one recent article 

(Lepeue et al., 2012) announced that that, for six U.S. cities, “Using the Cox proportional 

hazards model, statistically significant associations between [fine particulate matter] PM2.5 

exposure and all-cause, cardiovascular, and lung-cancer mortality were observed. …Each 10-

µg/m
3
 increase in PM2.5 was associated with a 14% increased risk of all-cause death.” But the 

word “increase” here does not refer to any actual change (increase over time) in PM2.5 levels or 

risk over time. Instead, it refers to associations between higher levels of PM2.5 and higher levels 

of risk. The study then infers that “These results suggest that further public policy efforts that 

reduce fine particulate matter air pollution are likely to have continuing public health benefits.”  

But this causal conclusion about predicted effects of changes does not follow from the statistical 

association between levels of PM2.5, since the two may (and in fact, in the U.S., often do) have 

opposite signs (Cox, 2012).  The contrasting statements on the left and right sides of Table 1 

suggest that health effects researchers not infrequently leap from observations of associations to 

conclusion about causation, without carefully checking whether changes in inputs produce the 

changes in outputs that static associations between them suggest. This casual treatment of key 

causal questions must change, if risk analysis predictions are to become more accurate and 

trustworthy.  

Risk management advice based on past statistical exposure-response associations (or 

other associations) may not be very useful for correctly predicting probable effects of future 

changes in exposures (or other variables) brought about by risk management interventions.  

Instead, an understanding of causal mechanisms – that is, of how changes in some variables 

change others – is usually necessary to correctly predict the effects of interventions (Greenland 

and Brumback, 2002; Freedman, 2004). This need not be difficult or mysterious. Simulation 

models (e.g., based on systems of differential and algebraic equations) describing flows of 

quantities among compartments over time, and the effects of interventions on flow rates, suffices 

to model the effects of interventions in many practical settings (Dash and Druzdzel, 2008; 
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Druzdzel and Simon 1993; Lu et al. 2000).  However, shifting the emphasis from making 

judgments about the causal interpretation or “weight-of-evidence” of statistical associations to 

rigorous formal testing of causal hypotheses, formulated in terms of propagation of changes 

along causal paths (or through more complex causal networks), requires a major change in 

commonly taught epidemiological practices. 

 

How to Do Better:  More Objective Tests for Causal Impacts 

 

Happily, modern methods of causal analysis now enable risk analysts to address 

questions about causation by considering relatively objective evidence on how and whether 

changes in the inputs to a system propagate to cause changes in its outputs.  This is a far more 

useful, and objective, approach than making judgments about statistical associations, for reasons 

given below.  Well-developed methodological principles for drawing sound causal inferences 

from observational data include asking (and using data to answer) the following simple, 

systematically skeptical, questions about observed exposure-response associations, to test 

whether the observations are logically capable of providing evidence for a genuine causal 

relation.  

 Do the study design and data collected permit convincing refutation of non-causal 

explanations for observed associations between levels of exposure and response (or between 

levels of other hypothesized cause and effect variables)?  Potential non-causal explanations 

for associations include data selection and model selection biases, residual confounding by 

modeled confounders, unmodeled confounders, unmodeled errors in exposure estimates and 

covariates, unmodeled uncertainties in model form specification, regression to the mean, and 

so forth (Cox, 2007).  These potential rival explanations can be ruled out by appropriate 

study designs, control group comparisons, and data analyses, if they indeed do not explain 

the observed associations (Campbell and Stanley, 1966; Maclure, 1990; Cox, 2007).  

Assuming that they have been ruled out, the next questions consider whether there is 

objective evidence that the observed relation might be causal. 

  Are significant positive associations also found between changes in exposures and changes 

in response rates?  If the answer is no, as revealed in some panel data studies of previously 
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reported positive associations between exposure and response levels (Stebbings, 1978), then 

this undermines causal interpretation of the positive associations.  

 Do changes in hypothesized causes precede changes in their hypothesized effects?  If not, 

e.g., if health effects are already declining before reductions in exposure, then this casts 

doubt on the latter being a cause of the former.  Doubt is increased if, as in the Dublin study 

in Table 1, a steep reduction in exposure is not followed by any detectable corresponding 

change in the rate of decline in effects. 

 Are reductions in hypothesized effects significantly greater in times and places where 

exposure went down that where exposure remained the same or went up?  If not, as in the 

HEI (2010) analysis of the Atlanta Olympics data in Table 1, then this casts doubt on the 

hypothesis that reductions in exposure caused the reductions in effects. 

  Do changes in hypothesized causes (e.g., exposures) help to predict subsequent changes in 

their hypothesized effects?  If not, e.g., if changes in effects appear to be statistically 

independent of previous changes in the hypothesized causes, then this reduces the plausibility 

of a causal interpretation for a regression model, or other statistical model, relating them.  

 

Such qualitative questions provide clear common-sense and logical foundations as screens for 

causal inference, and they are relatively easy to understand and ask.   

Quantitative methods, although sometimes technically sophisticated, help to implement 

many of the same basic ideas, and to provide relatively objective answers using formal statistical 

tests.  Among the most useful analytic methods for testing causal hypotheses and constructing 

valid causal models from data are the following. 

 Intervention analysis (Friede et al., 2006), also called interrupted time series analysis, tests 

whether the best-fitting model of the data-generating process for an observed time series, 

such as daily mortality and morbidity counts, changed significantly at, or following, the time 

of an intervention.  Intervention analysis provides methods to identify, test for, and estimate 

significant changes in time series that might have been caused by an intervention, and that 

cannot easily be explained by other (non-causal) hypotheses.  

 Change-point analysis (Helfenstein, 1991; Gilmour et al., 2006) searches for any significant 

changes in the data-generating process over an interval of time – for example, a change in the 
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slope of a long-term declining trend in cardiovascular morality rates, or a change in the 

season-specific rate of hospital admissions for pediatric asthma.   If a change point is 

detected at, or closely following, an intervention, such as an emissions ban that reduces 

pollution levels, then the intervention might have caused the change.  If no change is 

detected, then there is no evidence that the intervention had a detectable effect.  

 Quasi-experimental designs and methods (Campbell and Stanley, 1966) make use of control-

group comparisons (including pre- and post-intervention observations on the same subjects) 

to try to systematically refute each of a list of identified methodological threats to valid 

causal inference, such as “History” (e.g., that the Dublin coal ban occurred during a long-

term historical trend toward lower cardiovascular rates due to better prevention, diagnosis, 

and treatment), regression to the mean (unusual bursts of ill effects tend to be followed by 

lower levels even if any intervention that they may have triggered have no effect), aging of 

subjects, and so forth. 

 Panel data analysis (Angrist and Pischke, 2009) examines how well changes in explanatory 

variables predict changes in responses, using repeated measures of the same observational 

units over time to control for unobserved confounders. In health risk assessment, comparing 

changes in exposures to changes in responses can give a very different understanding of the 

likely health consequences caused by changes in exposure than studying estimated (or 

assumed) statistical associations between exposure and response levels (Cox, 2012, 

Stebbings, 1976).   

 Granger causality tests (Eichler and Didelez, 2010).  Changes in causes should help to 

predict subsequent changes in their effects, even if there is no intervention in the time series 

being observed.  To formally test whether changes in exposure might be a contributing cause 

of changes in short-term daily mortality rates, for example, one could compare a simple 

predictive model, created by regressing future mortality rates against their own past (lagged) 

values, to a richer model that also regresses them against lagged values of exposure as 

possible predictors. If including exposure history does not improve predictions of mortality 

rates (e.g., producing smaller mean squared prediction errors or larger mutual information 

between predicted and observed values), then the time series data do not support the 

hypothesis that exposure causes mortality, in the sense of helping to predict it.  This method 
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of testing causal hypotheses is incorporated in the Granger causality test.  (It is now widely 

and freely available, for example, as the granger.test procedure in R.)  In practice, Granger-

causality testing may show that some significant correlates of short-term mortality rates (such 

as low temperature (Mercer, 2003)) are also Granger-causes of the short-term mortality rates, 

while others (e.g., PM2.5) are not Granger-causes (Cox, 2012).  Although Granger tests are 

subject to the usual limitations of parametric modeling assumptions, such as the use of a 

linear regression model, the lack of Granger-causation between exposure and response even 

when there is a clear, statistically significant positive regression relation between them, 

highlights the importance of distinguishing between positive regression relations and causal 

relations.  (This distinction has not been prominent in the air pollution health effects 

accountability literature to date, but deserves to be in future.) 

 Conditional independence tests (Freedman, 2004, Friedman and Goldszmidt, 1998).  In both 

cross-sectional and longitudinal data, a cause should provide some information about its 

effect that cannot be obtained from other sources.  Conversely, if an effect is conditionally 

independent of a hypothesized cause, given the values of other explanatory variables (e.g., 

measured potential confounders and covariates), then the causal hypothesis is not supported 

by the data (Freedman, 2004).  For example, if daily mortality rates are conditionally 

independent of pollution levels, given city and month and temperature, then there would be 

no evidence that pollution levels make a causal contribution to daily mortality rates.  

Conversely, if there is no way to eliminate the significant difference between mortality rates 

for very different pollutant levels, holding other covariate levels fixed, then pollutant levels 

would appear as direct causes (“parents”) of daily mortality rates in causal graph models 

(Freedman, 2004, Friedman and Goldszmidt, 1998). 

 Counterfactual and potential outcome models.  One possible definition of the causal impact 

of exposure on mortality rates in a population or subpopulation is the difference between the 

average mortality rate with real exposures and the projected average mortality rate (typically 

derived from regression models) if all members had reduced or zero exposures.  Although 

this requires considering counterfactual exposures and responses, since no individual can be 

both exposed and unexposed, there has much recent progress in technical methods for 

developing and fitting counterfactual regression models (“marginal structural models” and 
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their extensions) to predict what would have happened if exposure had been lower, or absent 

(Robins et al. 2000; Moore et al., 2012).  Such counterfactual causal models can yield 

insights and conclusions quite different from earlier regression models. For example, in one 

recent study, adverse effects of ozone exposure that are statistically significant in earlier 

regression models (which must make unverifiable modeling assumptions about what 

responses would be to combinations of predictors that do not occur in reality), are not 

significant when methods are applied that only use realistic exposure-response data (Moore 

et al., 2012).       

 Modeling causal mechanisms via propagation of changes through chains or networks of 

causal predecessors.  If exposure causes adverse health effects, it must do so via one or more 

causal pathways.  Collecting biomarker data can allow specific causal hypotheses about the 

mechanisms of harm to be tested (Hack et al., 2010).  For example, causal graph models 

(Freedman, 2004), although in general only providing a way to factor joint distributions into 

marginal and conditional distributions, can be constructed to preserve causal orderings 

discovered from structural equations or mechanistic models (Dash and Druzdzel, 2008; 

Druzdzel and Simon 1993; Lu et al. 2000).   In this case, absence of changes in the 

intermediate variables that are hypothesized to mediate the transmission of causal impacts 

from exposure to health response would provide evidence against the hypothesized causal 

mechanism.  Conversely, detecting and quantifying those changes (via the conditional 

probability relations at intermediate nodes in a causal graph model) allows prediction of the 

sizes of changes in health effects to be expected from changes in exposure, given the values 

of other variables in the causal model.  For example, a recent study (Chuang et al., 2007) 

provided panel data to test the specific mechanistic hypotheses for air pollution health 

effects, including that PM2.5 causes adverse cardiovascular effects by increasing oxidative 

stress as measured by urinary 8-hydroxy-2′-deoxyguanosine (a marker for oxidative DNA 

damage). As summarized by Kaufman (2007), “blood and electrocardiographic markers were 

repeatedly collected over 3 months to examine multiple potential mechanistic pathways. 

They had the benefit of fairly large daily fluctuations in exposure, presumably dictated by 

meteorological conditions. While their inflammatory, oxidative stress, fibrinolysis, and 

coagulation health markers did not change consistently as hypothesized with fine particles, 
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they did detect associations with some PM components and credited these to traffic-related 

air pollution…. Their measure of “oxidative stress” (urinary 8-hydroxy-2′-deoxyguanosine, 

assessing oxidative DNA damage) was not associated with pollution exposures. Heart rate 

variability metrics, on the other hand, consistently demonstrated negative associations with 

all air pollutants examined, in a manner that appeared to be independent of inflammation.”  

This ability to refute expected causal hypotheses and to reveal unexpected time-ordered 

sequences of changes makes panel data especially valuable for learning from data by testing 

and improving mechanistic models.   

 

Table 2 summarizes some of the best-developed quantitative methods for testing causal 

hypotheses and for quantifying the sizes of causal effects.  These methods of causal analysis are 

relatively objective. Unlike expert judgments and opinions about the causal interpretation of 

statistical associations, they can be independently replicated by others, using standard statistical 

methods (such as granger.test in the R statistical computing environment).  They focus on 

answering the following key factual questions.  

1. Can any effect (e.g., a significant change in a health effects time series following a change in 

exposures) be detected?  Methods for detecting such changes include change-point analysis, 

intervention analysis, and panel data analysis.  If there is no apparent effect, as in the Dublin 

study data (Wittmaack, 2007), then there is nothing to explain, and proffered causal 

interpretations are superfluous. 

2. If so, how large is it? This may be assessed via intervention analysis, change-point models, 

panel data, or quasi-experimental pre-post comparisons, with counterfactual causal models 

untangling the effects of confounders and estimating the remaining effect specifically caused 

by exposure (Moore et al., 2012).  If this causal effect is only a fraction as large as the 

statistical “effect” estimated from a regression model, for example, then only a portion of the 

statistical association should be attributed to exposure, as opposed to confounding.  

3. Can changes in responses be explained or predicted as well without knowledge of a putative 

cause as with it? This crucial screening question can be answered using Granger tests, 

conditional independence tests, and quasi-experimental analyses to refute other explanations.  

If knowledge of changes in a hypothesized cause does not improve ability to predict its 
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hypothesized effects, or, conversely, if the effects can be explained by other variables and are 

conditionally independent of the hypothesized cause, given the values of the other variables, 

then the causal hypothesis is not supported.   

4. Are the changes in causal predecessors implied by hypothesized causal mechanisms 

observed?  This can be addressed using causal graph models and panel data analysis applied 

to biomarker data   

 

Using modern methods of causal analysis to address these factual questions can liberate risk 

analysts and policy makers from the need to rely on (potentially biased or unreliable) subjective 

judgments in addressing questions of causality.  They provide an alternative to the traditional 

Hill-type criteria (such as strength, consistency, specificity, and temporality of associations). 

 

Table 2.  Some formal methods for modeling and testing causal hypotheses 

Method and 

References 

Basic Idea Appropriate study 

design 

Conditional 

independence tests 

(Freedman, 2004, 

Friedman and 

Goldszmidt, 1998) 

Is hypothesized effect statistically 

independent of other (“ancestor”) 

variables, given values of hypothesized 

direct causes (“parents” in causal graph 

model?  If so, this strengthens causal 

interpretation. 

Is hypothesized effect statistically 

independent of hypothesized cause, given 

the values of other variables?  If so, this 

undermines causal interpretation. 

Cross-sectional data 

 

Can also be applied to 

multi-period data (in 

dynamic Bayesian 

networks (DBNs)  

Panel data analysis 

(Angrist and Pischke, 

2009, Stebbings, 1976) 

Are changes in exposures followed by 

changes in the effects that they are 

hypothesized to help cause?  If not, this 

undermines causal interpretation; if so, this 

strengthens causal interpretation. 

Panel data study:  Collect 

a sequence of 

observations on same 

subjects or units over 

time 

Granger causality test 

(Eichler and Didelez, 

2010) 

Does the history of the hypothesized cause 

improve ability to predict the future of the 

hypothesized effect? If so, this strengthens 

causal interpretation; otherwise, it 

undermines causal interpretation. 

Time series data on 

hypothesized causes and 

effects 
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Quasi-experimental 

design and analysis 

(Campbell and 

Stanley, 1966) 

Can control groups and other comparisons 

refute alternative (non-causal) explanations 

for observed associations between 

hypothesized causes and effects?  For 

example, can coincident trends and 

regression to the mean be refuted as 

possible explanations? If so, this 

strengthens causal interpretation. 

Longitudinal 

observational data on 

subjects exposed and not 

exposed to interventions 

that change the 

hypothesized cause(s) of 

effects. 

Intervention analysis, 

change point analysis 

(Helfenstein, 1991; 

Gilmour et al., 2006; 

Friede et al., 2006) 

Does the best-fitting model of the observed 

data change significantly at or following 

the time of an intervention? If so, this 

strengthens causal interpretation. 

Do the quantitative changes in 

hypothesized causes predict and explain 

the subsequently observed quantitative 

changes in hypothesized effects?  If so, this 

strengthens causal interpretation. 

Time series observations 

on hypothesized effects, 

and knowledge of timing 

of intervention(s) 

 

 

Quantitative time series 

data for hypothesized 

causes and effects 

Counterfactual and 

potential outcome 

models (Robins et al. 

2000; Moore et al., 

2012) 

Do exposed individuals have significantly 

different response probabilities than they 

would have had if they had not been 

exposed? 

Cross-sectional and/or 

longitudinal data, with 

selection biases and 

feedback among 

variables allowed 

 

Causal network 

models of change 

propagation (Hack et 

al., 2010, Dash and 

Druzdzel, 2008) 

Do changes in exposures (or other causes) 

create a cascade of changes through a 

network of causal mechanisms 

(represented by equations), resulting in 

changes in the effect variables? 

Observations of variables 

in a dynamic system out 

of equilibrium 
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Conclusions: Improving Causal Analysis of Health Effects  

The principles and techniques sketched here for protecting against false conclusions and 

for drawing sound causal inference from data are ready for practical use in health effects 

research and risk assessment, both to reduce uncertainty about causality in concentration-

response functions, and to more clearly delineate needed distinctions between causal and non-

causal associations.  Taking seriously the need to apply more objective methods to assess 

causality in health risk assessment suggests the following policy-relevant perspectives. 

 Expert judgment-based assessments of causality, and subjective causal interpretations of 

statistical associations, are unreliable and prone to error and bias. This is illustrated in 

examples where confidently expressed expert conclusions and more formal causal analyses 

conflict (as for several studies in Table 1).  The prevalence of confirmation bias (Fugelsang 

et al., 2004; Gardner 2009; Sunstein, 2009) makes it crucial for expert panels (or individuals) 

tasked with forming judgments about causation to seek out well-supported contrary views. 

 It is possible and practical to do better.  More objective methods for causal analysis are now 

readily available, and more informative designs and analyses (e.g., using panel data to study 

changes in exposure and response variables, instead of using regression models to study 

associations between their levels) can eliminate much of the speculation, controversy, and 

ambiguity surrounding causation in health effects research. 

 The credibility of conclusions about causation, and the credibility of risk assessments and 

health benefits projections based on them, should be assessed based on how well they 

provide sound, independently reproducible, answers to specific, factual, causal questions. 

These include addressing whether observed changes in hypothesized causal predecessors do 

in fact precede and help to explain or predict observed changes in their hypothesized effects.  

Passionate or confident beliefs about causation expressed by subject matter experts who have 

not yet addressed these questions using data and independently reproducible analyses, should 

be regarded as expressions of personal belief, rather than as answers to scientific questions.         

 

Following these recommendations could transform health effects accountability research (Pope, 

2010), by promoting health benefits estimates for exposure reductions that are more realistic, and 

more solidly based on reproducible science and data, than those driving headlines today.  This 
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would reduce needless controversies over the interpretation of ambiguous statistical associations; 

focus attention on the sizes of demonstrable real-world causal impacts; and shift the emphasis of 

health effects claims for emissions reductions toward more objective and independently 

verifiable risk analysis.   
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